AoPS Community

Finals 1990

www.artofproblemsolving.com/community/c4684
by Megus, schulmannerism, TomciO, seshadri

Day 1

$1 \quad$ Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ that satisfy

$$
(x-y) f(x+y)-(x+y) f(x-y)=4 x y\left(x^{2}-y^{2}\right)
$$

2 Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive numbers. Prove that

$$
\sum_{i=1}^{n} \frac{x_{i}^{2}}{x_{i}^{2}+x_{i+1} x_{i+2}} \leq n-1
$$

Where $x_{n+1}=x_{1}$ and $x_{n+2}=x_{2}$.
3 In a tournament, every two of the n players played exactly one match with each other (no draws). Prove that it is possible either
(i) to partition the league in two groups A and B such that everybody in A defeated everybody in B; or
(ii) to arrange all the players in a chain $x_{1}, x_{2}, \ldots, x_{n}, x_{1}$ in such a way that each player defeated his successor.

Day 2

1 A triangle whose all sides have length not smaller than 1 is inscribed in a square of side length 1. Prove that the center of the square lies inside the triangle or on its boundary.

2 Suppose that $\left(a_{n}\right)$ is a sequence of positive integers such that $\lim _{n \rightarrow \infty} \frac{n}{a_{n}}=0$
Prove that there exists k such that there are at least 1990 perfect squares between $a_{1}+a_{2}+$ $\ldots+a_{k}$ and $a_{1}+a_{2}+\ldots+a_{k+1}$.

3 Prove that for all integers $n>2$,

$$
3 \mid \sum_{i=0}^{[n / 3]}(-1)^{i} C_{n}^{3 i}
$$

