

AoPS Community

2017 Mediterranean Mathematics Olympiad

Mediterranean Mathematics Olympiad 2017

www.artofproblemsolving.com/community/c468472 by socrates

Problem 1 Let *ABC* be an equilateral triangle, and let *P* be some point in its circumcircle. Determine all positive integers *n*, for which the value of the sum $S_n(P) = |PA|^n + |PB|^n + |PC|^n$ is independent of the choice of point *P*.

Problem 2 Determine the smallest integer n for which there exist integers x_1, \ldots, x_n and positive integers a_1, \ldots, a_n so that

 $x_1 + \dots + x_n = 0,$ $a_1x_1 + \dots + a_nx_n > 0,$ and $a_1^2x_1 + \dots + a_n^2x_n < 0.$

Problem 3 A set *S* of integers is Balearic, if there are two (not necessarily distinct) elements $s, s' \in S$ whose sum s + s' is a power of two; otherwise it is called a non-Balearic set. Find an integer *n* such that $\{1, 2, ..., n\}$ contains a 99-element non-Balearic set, whereas all the 100-element subsets are Balearic.

Problem 4 Let x, y, z and a, b, c be positive real numbers with a + b + c = 1. Prove that

$$(x^2 + y^2 + z^2)\left(\frac{a^3}{x^2 + 2y^2} + \frac{b^3}{y^2 + 2z^2} + \frac{c^3}{z^2 + 2x^2}\right) \ge \frac{1}{9}.$$

Art of Problem Solving is an ACS WASC Accredited School.