1991 Polish MO Finals

AoPS Community

Finals 1991

www.artofproblemsolving.com/community/c4685

by Megus, ociretsih, grobber, Vasc

1	Prove or disprove that there exist two tetrahedra T_1 and T_2 such that: (i) the volume of T_1 is greater than that of T_2 ; (ii) the area of any face of T_1 does not exceed the area of any face of T_2 .
2	Let X be the set of all lattice points in the plane (points (x, y) with $x, y \in \mathbb{Z}$). A path of length n is a chain $(P_0, P_1,, P_n)$ of points in X such that $P_{i-1}P_i = 1$ for $i = 1,, n$. Let $F(n)$ be the number of distinct paths beginning in $P_0 = (0, 0)$ and ending in any point P_n on line $y = 0$. Prove that $F(n) = {2n \choose n}$
3	Define $N = \sum_{k=1}^{60} e_k k^{k^k}$
	where $e_k \in \{-1, 1\}$ for each k . Prove that N cannot be the fifth power of an integer.
Day 2	
1	On the Cartesian plane consider the set V of all vectors with integer coordinates. Determine all functions $f: V \to \mathbb{R}$ satisfying the conditions: (i) $f(v) = 1$ for each of the four vectors $v \in V$ of unit length. (ii) $f(v+w) = f(v) + f(w)$ for every two perpendicular vectors $v, w \in V$ (Zero vector is considered to be perpendicular to every vector).
2	Two noncongruent circles k_1 and k_2 are exterior to each other. Their common tangents inter- sect the line through their centers at points A and B . Let P be any point of k_1 . Prove that there is a diameter of k_2 with one endpoint on line PA and the other on PB .
3	If x, y, z are real numbers satisfying $x^2 + y^2 + z^2 = 2$, prove the inequality

$$x + y + z \le 2 + xyz$$

When does equality occur?

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.