AoPS Community

Finals 1991

www.artofproblemsolving.com/community/c4685
by Megus, ociretsih, grobber, Vasc

Day 1

1 Prove or disprove that there exist two tetrahedra T_{1} and T_{2} such that:
(i) the volume of T_{1} is greater than that of T_{2};
(ii) the area of any face of T_{1} does not exceed the area of any face of T_{2}.

2 Let X be the set of all lattice points in the plane (points (x, y) with $x, y \in \mathbb{Z}$). A path of length n is a chain $\left(P_{0}, P_{1}, \ldots, P_{n}\right)$ of points in X such that $P_{i-1} P_{i}=1$ for $i=1, \ldots, n$. Let $F(n)$ be the number of distinct paths beginning in $P_{0}=(0,0)$ and ending in any point P_{n} on line $y=0$. Prove that $F(n)=\binom{2 n}{n}$

3 Define

$$
N=\sum_{k=1}^{60} e_{k} k^{k^{k}}
$$

where $e_{k} \in\{-1,1\}$ for each k. Prove that N cannot be the fifth power of an integer.

Day 2

1 On the Cartesian plane consider the set V of all vectors with integer coordinates. Determine all functions $f: V \rightarrow \mathbb{R}$ satisfying the conditions:
(i) $f(v)=1$ for each of the four vectors $v \in V$ of unit length.
(ii) $f(v+w)=f(v)+f(w)$ for every two perpendicular vectors $v, w \in V$
(Zero vector is considered to be perpendicular to every vector).
2 Two noncongruent circles k_{1} and k_{2} are exterior to each other. Their common tangents intersect the line through their centers at points A and B. Let P be any point of k_{1}. Prove that there is a diameter of k_{2} with one endpoint on line $P A$ and the other on $P B$.

3 If x, y, z are real numbers satisfying $x^{2}+y^{2}+z^{2}=2$, prove the inequality

$$
x+y+z \leq 2+x y z
$$

When does equality occur?

