

AoPS Community

Finals 1992

www.artofproblemsolving.com/community/c4686

by Megus, stergiu, Risk, Forward, Arne, ociretsih, Rafal

Day	1
-----	---

1	Segments AC and BD meet at P, and $ PA = PD $, $ PB = PC $. O is the circumcenter of the triangle PAB. Show that OP and CD are perpendicular.
2	Find all functions $f : \mathbb{Q}^+ \to \mathbb{Q}^+$, where \mathbb{Q}^+ is the set of positive rationals, such that $f(x+1) = f(x) + 1$ and $f(x^3) = f(x)^3$ for all x .
3	Show that for real numbers $x_1, x_2,, x_n$ we have: $\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{x_i x_j}{i+i} \ge 0$
	$\sum_{i=1}^{n} \sum_{j=1}^{n} i+j$
	When do we have equality?
Day 2	
1	The functions $f_0, f_1, f_2,$ are defined on the reals by $f_0(x) = 8$ for all $x, f_{n+1}(x) = \sqrt{x^2 + 6f_n(x)}$. For all n solve the equation $f_n(x) = 2x$.
2	The base of a regular pyramid is a regular $2n$ -gon $A_1A_2A_{2n}$. A sphere passing through the
	top vertex S of the pyramid cuts the edge SA_i at B_i (for $i = 1, 2,, 2n$). Show that $\sum_{i=1}^{n} SB_{2i-1} =$
	$\sum_{i=1}^{n} SB_{2i}.$
3	Show that $(k^3)!$ is divisible by $(k!)^{k^2+k+1}$.

Art of Problem Solving is an ACS WASC Accredited School.