Art of Problem Solving

AoPS Community

Finals 1994

www.artofproblemsolving.com/community/c4688
by Megus, grobber, ociretsih

Day 1

1 Find all triples (x, y, z) of positive rationals such that $x+y+z, \frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ and $x y z$ are all integers.

2 Let be given two parallel lines k and l, and a circle not intersecting k. Consider a variable point A on the line k. The two tangents from this point A to the circle intersect the line l at B and C. Let m be the line through the point A and the midpoint of the segment $B C$. Prove that all the lines m (as A varies) have a common point.
$3 \quad k$ is a fixed positive integer. Let a_{n} be the number of maps f from the subsets of $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, k\}$ such that for all subsets A, B of $\{1,2, \ldots, n\}$ we have $f(A \cap B)=\min (f(A), f(B))$. Find $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$.

Day 2

$1 \quad m, n$ are relatively prime. We have three jugs which contain m, n and $m+n$ liters. Initially the largest jug is full of water. Show that for any k in $\{1,2, \ldots, m+n\}$ we can get exactly k liters into one of the jugs.

2 A parallelopiped has vertices $A_{1}, A_{2}, \ldots, A_{8}$ and center O. Show that:

$$
4 \sum_{i=1}^{8} O A_{i}^{2} \leq\left(\sum_{i=1}^{8} O A_{i}\right)^{2}
$$

3 The distinct reals $x_{1}, x_{2}, \ldots, x_{n},(n>3)$ satisfy $\sum_{i=1}^{n} x_{i}=0, \sum_{i=1}^{n} x_{i}^{2}=1$. Show that four of the numbers a, b, c, d must satisfy:

$$
a+b+c+n a b c \leq \sum_{i=1}^{n} x_{i}^{3} \leq a+b+d+n a b d
$$

