

AoPS Community

Finals 1994

www.artofproblemsolving.com/community/c4688 by Megus, grobber, ociretsih

Day 1

1	Find all triples (x, y, z) of positive rationals such that $x + y + z$, $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ and xyz are all integers.
2	Let be given two parallel lines k and l , and a circle not intersecting k . Consider a variable point A on the line k . The two tangents from this point A to the circle intersect the line l at B and C . Let m be the line through the point A and the midpoint of the segment BC . Prove that all the lines m (as A varies) have a common point.
3	<i>k</i> is a fixed positive integer. Let a_n be the number of maps <i>f</i> from the subsets of $\{1, 2,, n\}$ to $\{1, 2,, k\}$ such that for all subsets A, B of $\{1, 2,, n\}$ we have $f(A \cap B) = \min(f(A), f(B))$. Find $\lim_{n\to\infty} \sqrt[n]{a_n}$.

Day 2

- 1 m, n are relatively prime. We have three jugs which contain m, n and m + n liters. Initially the largest jug is full of water. Show that for any k in $\{1, 2, ..., m + n\}$ we can get exactly k liters into one of the jugs.
- **2** A parallelopiped has vertices $A_1, A_2, ..., A_8$ and center *O*. Show that:

$$4\sum_{i=1}^{8} OA_{i}^{2} \le \left(\sum_{i=1}^{8} OA_{i}\right)^{2}$$

3 The distinct reals $x_1, x_2, ..., x_n$, (n > 3) satisfy $\sum_{i=1}^n x_i = 0$, $\sum_{i=1}^n x_i^2 = 1$. Show that four of the numbers a, b, c, d must satisfy:

$$a+b+c+nabc \le \sum_{i=1}^n x_i^3 \le a+b+d+nabd$$

🐼 AoPS Online 🔯 AoPS Academy 🐲 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.