

AoPS Community

1995 Polish MO Finals

Finals 1995

www.artofproblemsolving.com/community/c4689 by Megus, Pascual2005, pbornsztein

Day	1		

1	How many subsets of $\{1, 2,, 2n\}$ do not contain two numbers with sum $2n + 1$?
2	The diagonals of a convex pentagon divide it into a small pentagon and ten triangles. What is the largest number of the triangles that can have the same area?
3	Let p be a prime number, and define a sequence by: $x_i = i$ for $i = 0, 1, 2, p - 1$ and $x_n = x_{n-1} + x_{n-p}$ for $n \ge p$ Find the remainder when x_{p^3} is divided by p .
Day 2	2
1	The positive reals $x_1, x_2,, x_n$ have harmonic mean 1. Find the smallest possible value of
	$x_1 + \frac{x_2}{2} + \frac{x_3}{3} + \dots + \frac{x_n}{n}.$
2	$x_1 + \frac{x_2}{2} + \frac{x_3}{3} + + \frac{x_n}{n}$. An urn contains <i>n</i> balls labeled 1, 2,, <i>n</i> . We draw the balls out one by one (without replacing them) until we obtain a ball whose number is divisible by <i>k</i> . Find all <i>k</i> such that the expected number of balls removed is <i>k</i> .

Art of Problem Solving is an ACS WASC Accredited School.