Art of Problem Solving

## AoPS Community

## Finals 1995

www.artofproblemsolving.com/community/c4689
by Megus, Pascual2005, pbornsztein

## Day 1

1 How many subsets of $\{1,2, \ldots, 2 n\}$ do not contain two numbers with sum $2 n+1$ ?
2 The diagonals of a convex pentagon divide it into a small pentagon and ten triangles. What is the largest number of the triangles that can have the same area?

3 Let $p$ be a prime number, and define a sequence by: $x_{i}=i$ for $i=, 0,1,2 \ldots, p-1$ and $x_{n}=$ $x_{n-1}+x_{n-p}$ for $n \geq p$
Find the remainder when $x_{p^{3}}$ is divided by $p$.

## Day 2

1 The positive reals $x_{1}, x_{2}, \ldots, x_{n}$ have harmonic mean 1 . Find the smallest possible value of $x_{1}+\frac{x_{2}^{2}}{2}+\frac{x_{3}^{3}}{3}+\ldots+\frac{x_{n}^{n}}{n}$.

2 An urn contains $n$ balls labeled $1,2, \ldots, n$. We draw the balls out one by one (without replacing them) until we obtain a ball whose number is divisible by $k$. Find all $k$ such that the expected number of balls removed is $k$.
$3 \quad P A, P B, P C$ are three rays in space. Show that there is just one pair of points $B^{\prime}, C^{\prime}$ with $B^{\prime}$ on the ray $P B$ and $C^{\prime}$ on the ray $P C$ such that $P C^{\prime}+B^{\prime} C^{\prime}=P A+A B^{\prime}$ and $P B^{\prime}+B^{\prime} C^{\prime}=P A+A C^{\prime}$.

