Art of Problem Solving

AoPS Community

Finals 1996

www.artofproblemsolving.com/community/c4690
by Megus, Arne

Day 1

1 Find all pairs (n, r) with n a positive integer and r a real such that $2 x^{2}+2 x+1$ divides $(x+1)^{n}-r$.

2 Let P be a point inside a triangle $A B C$ such that $\angle P B C=\angle P C A<\angle P A B$. The line $P B$ meets the circumcircle of triangle $A B C$ at a point E (apart from B). The line $C E$ meets the circumcircle of triangle $A P E$ at a point F (apart from E). Show that the ratio $\frac{|A P E F|}{|A B P|}$ does not depend on the point P, where the notation $\left|P_{1} P_{2} \ldots P_{n}\right|$ stands for the area of an arbitrary polygon $P_{1} P_{2} \ldots P_{n}$.
$3 a_{i}, x_{i}$ are positive reals such that $a_{1}+a_{2}+\ldots+a_{n}=x_{1}+x_{2}+\ldots+x_{n}=1$. Show that

$$
2 \sum_{i<j} x_{i} x_{j} \leq \frac{n-2}{n-1}+\sum \frac{a_{i} x_{i}^{2}}{1-a_{i}}
$$

When do we have equality?

Day 2

$1 A B C D$ is a tetrahedron with $\angle B A C=\angle A C D$ and $\angle A B D=\angle B D C$. Show that $A B=C D$.
2 Let $p(k)$ be the smallest prime not dividing k. Put $q(k)=1$ if $p(k)=2$, or the product of all primes $<p(k)$ if $p(k)>2$. Define the sequence $x_{0}, x_{1}, x_{2}, \ldots$ by $x_{0}=1, x_{n+1}=\frac{x_{n} p\left(x_{n}\right)}{q\left(x_{n}\right)}$. Find all n such that $x_{n}=111111$

3 From the set of all permutations f of $\{1,2, \ldots, n\}$ that satisfy the condition: $f(i) \geq i-1 i=$ $1, \ldots, n$
one is chosen uniformly at random. Let p_{n} be the probability that the chosen permutation f satisfies $f(i) \leq i+1 i=1, \ldots, n$
Find all natural numbers n such that $p_{n}>\frac{1}{3}$.

