AoPS Community

Finals 1997

www.artofproblemsolving.com/community/c4691
by Megus

Day 1

1 The positive integers $x_{1}, x_{2}, \ldots, x_{7}$ satisfy $x_{6}=144, x_{n+3}=x_{n+2}\left(x_{n+1}+x_{n}\right)$ for $n=1,2,3,4$. Find x_{7}.

2 Find all real solutions to:

$$
\begin{aligned}
3\left(x^{2}+y^{2}+z^{2}\right) & =1 \\
x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} & =x y z(x+y+z)^{3} .
\end{aligned}
$$

3 In a tetrahedron $A B C D$, the medians of the faces $A B D, A C D, B C D$ from D make equal angles with the corresponding edges $A B, A C, B C$. Prove that each of these faces has area less than or equal to the sum of the areas of the other two faces.

Equivalent version of the problem: $A B C D$ is a tetrahedron. $D E, D F, D G$ are medians of triangles $D B C, D C A, D A B$. The angles between $D E$ and $B C$, between $D F$ and $C A$, and between $D G$ and $A B$ are equal. Show that: area $D B C \leq$ area $D C A+$ area $D A B$.

Day 2

1 The sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by $a_{1}=0, a_{n}=a_{[n / 2]}+(-1)^{n(n+1) / 2}$. Show that for any positive integer k we can find n in the range $2^{k} \leq n<2^{k+1}$ such that $a_{n}=0$.
$2 A B C D E$ is a convex pentagon such that $D C=D E$ and $\angle C=\angle E=90^{\circ} . F$ is a point on the side $A B$ such that $\frac{A F}{B F}=\frac{A E}{B C}$. Show that $\angle F C E=\angle A D E$ and $\angle F E C=\angle B D C$.

3 Given any n points on a unit circle show that at most $\frac{n^{2}}{3}$ of the segments joining two points have length $>\sqrt{2}$.

