

AoPS Community

Finals 1998

Day 1

www.artofproblemsolving.com/community/c4692 by Megus

1	Find all solutions in positive integers to:
	a+b+c=xyz
	x + y + z = abc
2	F_n is the Fibonacci sequence $F_0 = F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$. Find all pairs $m > k \ge 0$ such that the sequence x_0, x_1, x_2, \dots defined by $x_0 = \frac{F_k}{F_m}$ and $x_{n+1} = \frac{2x_n - 1}{1 - x_n}$ for $x_n \ne 1$, or 1 if $x_n = 1$, contains the number 1
3	PABCDE is a pyramid with $ABCDE$ a convex pentagon. A plane meets the edges PA, PB, PC in points A', B', C', D', E' distinct from A, B, C, D, E and P . For each of the quadrilaterals $ABB'A', BCC'B, CDD'C', DEE'D', EAA'E'$ take the intersection of the diagonals. Show that the five intersections are coplanar.
Day 2	
1	Define the sequence $a_1, a_2, a_3,$ by $a_1 = 1$, $a_n = a_{n-1} + a_{[n/2]}$. Does the sequence contain infinitely many multiples of 7?
2	The points D, E on the side AB of the triangle ABC are such that $\frac{AD}{DB}\frac{AE}{EB} = \left(\frac{AC}{CB}\right)^2$. Show that $\angle ACD = \angle BCE$.
3	S is a board containing all unit squares in the xy plane whose vertices have integer coordinates and which lie entirely inside the circle $x^2 + y^2 = 1998^2$. In each square of S is written $+1$. An allowed move is to change the sign of every square in S in a given row, column or diagonal. Can we end up with exactly one -1 and $+1$ on the rest squares by a sequence of allowed moves?

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱