Art of Problem Solving

AoPS Community

Finals 1998

www.artofproblemsolving.com/community/c4692
by Megus

Day 1

1 Find all solutions in positive integers to:

$$
\begin{aligned}
& a+b+c=x y z \\
& x+y+z=a b c
\end{aligned}
$$

$2 \quad F_{n}$ is the Fibonacci sequence $F_{0}=F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$. Find all pairs $m>k \geq 0$ such that the sequence $x_{0}, x_{1}, x_{2}, \ldots$ defined by $x_{0}=\frac{F_{k}}{F_{m}}$ and $x_{n+1}=\frac{2 x_{n}-1}{1-x_{n}}$ for $x_{n} \neq 1$, or 1 if $x_{n}=1$, contains the number 1
$3 \quad P A B C D E$ is a pyramid with $A B C D E$ a convex pentagon. A plane meets the edges $P A, P B, P C, P D, P E$ in points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$ distinct from A, B, C, D, E and P. For each of the quadrilaterals $A B B^{\prime} A^{\prime}, B C C^{\prime} B, C D D^{\prime} C^{\prime}, D E E^{\prime} D^{\prime}, E A A^{\prime} E^{\prime}$ take the intersection of the diagonals. Show that the five intersections are coplanar.

Day 2

1 Define the sequence $a_{1}, a_{2}, a_{3}, \ldots$ by $a_{1}=1, a_{n}=a_{n-1}+a_{[n / 2]}$. Does the sequence contain infinitely many multiples of 7 ?

2 The points D, E on the side $A B$ of the triangle $A B C$ are such that $\frac{A D}{D B} \frac{A E}{E B}=\left(\frac{A C}{C B}\right)^{2}$. Show that $\angle A C D=\angle B C E$.
$3 \quad S$ is a board containing all unit squares in the $x y$ plane whose vertices have integer coordinates and which lie entirely inside the circle $x^{2}+y^{2}=1998^{2}$. In each square of S is written +1 . An allowed move is to change the sign of every square in S in a given row, column or diagonal. Can we end up with exactly one -1 and +1 on the rest squares by a sequence of allowed moves?

