

AoPS Community

Finals 1999

www.artofproblemsolving.com/community/c4693 by Megus, harazi, grobber, Maverick

Day 1	
1	Let <i>D</i> be a point on the side <i>BC</i> of a triangle <i>ABC</i> such that $AD > BC$. Let <i>E</i> be a point on the side <i>AC</i> such that $\frac{AE}{EC} = \frac{BD}{AD-BC}$. Show that $AD > BE$.
2	Given 101 distinct non-negative integers less than 5050 show that one can choose four a, b, c, d such that $a + b - c - d$ is a multiple of 5050
3	Show that one can find 50 distinct positive integers such that the sum of each number and its digits is the same.
Day 2	
1	For which n do the equations have a solution in integers:
	$ \begin{aligned} x_1^2 + x_2^2 + 50 &= 16x_1 + 12x_2 \\ x_2^2 + x_3^2 + 50 &= 16x_2 + 12x_3 \\ \dots & \dots & \dots & \dots \\ x_{n-1}^2 + x_n^2 + 50 &= 16x_{n-1} + 12x_n \\ x_n^2 + x_1^2 + 50 &= 16x_n + 12x_1 \end{aligned} $
2	Prove that for any $2n$ real numbers $a_1, a_2,, a_n, b_1, b_2,, b_n$, we have $\sum_{i < j} a_i - a_j + \sum_{i < j} b_i - b_j $ $\sum_{i,j \in [1,n]} a_i - b_j $.
3	Let $ABCDEF$ be a convex hexagon such that $\angle B + \angle D + \angle F = 360^{\circ}$ and
	$\frac{AB}{BC} \cdot \frac{CD}{DE} \cdot \frac{EF}{FA} = 1.$
	Prove that $\frac{BC}{CA} \cdot \frac{AE}{EF} \cdot \frac{FD}{DB} = 1.$

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.