Art of Problem Solving

AoPS Community

Finals 1999

www.artofproblemsolving.com/community/c4693
by Megus, harazi, grobber, Maverick

Day 1

1 Let D be a point on the side $B C$ of a triangle $A B C$ such that $A D>B C$. Let E be a point on the side $A C$ such that $\frac{A E}{E C}=\frac{B D}{A D-B C}$. Show that $A D>B E$.

2 Given 101 distinct non-negative integers less than 5050 show that one can choose four a, b, c, d such that $a+b-c-d$ is a multiple of 5050

3 Show that one can find 50 distinct positive integers such that the sum of each number and its digits is the same.

Day 2

1 For which n do the equations have a solution in integers:

$$
\begin{aligned}
& x_{1}^{2}+x_{2}^{2}+50=16 x_{1}+12 x_{2} \\
& x_{2}^{2}+x_{3}^{2}+50=16 x_{2}+12 x_{3} \\
& \cdots \cdots \cdots \cdots \\
& x_{n-1}^{2}+x_{n}^{2}+50=16 x_{n-1}+12 x_{n} \\
& x_{n}^{2}+x_{1}^{2}+50=16 x_{n}+12 x_{1}
\end{aligned}
$$

2 Prove that for any $2 n$ real numbers $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$, we have $\sum_{i<j}\left|a_{i}-a_{j}\right|+\sum_{i<j}\left|b_{i}-b_{j}\right| \leq$ $\sum_{i, j \in[1, n]}\left|a_{i}-b_{j}\right|$.

3 Let $A B C D E F$ be a convex hexagon such that $\angle B+\angle D+\angle F=360^{\circ}$ and

$$
\frac{A B}{B C} \cdot \frac{C D}{D E} \cdot \frac{E F}{F A}=1
$$

Prove that

$$
\frac{B C}{C A} \cdot \frac{A E}{E F} \cdot \frac{F D}{D B}=1
$$

