AoPS Community

Finals 2000
www.artofproblemsolving.com/community/c4694
by Megus, warut_suk, grobber

Day 1

1 Find number of solutions in non-negative reals to the following equations:

$$
\begin{array}{r}
x_{1}+x_{n}^{2}=4 x_{n} \\
x_{2}+x_{1}^{2}=4 x_{1} \\
\cdots \\
x_{n}+x_{n-1}^{2}=4 x_{n-1}
\end{array}
$$

2 Let a triangle $A B C$ satisfy $A C=B C$; in other words, let $A B C$ be an isosceles triangle with base $A B$. Let P be a point inside the triangle $A B C$ such that $\angle P A B=\angle P B C$. Denote by M the midpoint of the segment $A B$. Show that $\angle A P M+\angle B P C=180^{\circ}$.

3 The sequence $p_{1}, p_{2}, p_{3}, \ldots$ is defined as follows. p_{1} and p_{2} are primes. p_{n} is the greatest prime divisor of $p_{n-1}+p_{n-2}+2000$. Show that the sequence is bounded.

Day 2

$1 \quad P A_{1} A_{2} \ldots A_{n}$ is a pyramid. The base $A_{1} A_{2} \ldots A_{n}$ is a regular n-gon. The apex P is placed so that the lines $P A_{i}$ all make an angle 60 with the plane of the base. For which n is it possible to find B_{i} on $P A_{i}$ for $i=2,3, \ldots, n$ such that $A_{1} B_{2}+B_{2} B_{3}+B_{3} B_{4}+\ldots+B_{n-1} B_{n}+B_{n} A_{1}<2 A_{1} P$?

2 In the unit squre For the given natural number $n \geq 2$ find the smallest number k that from each set of k unit squares of the $n \times n$ chessboard one can achoose a subset such that the number of the unit squares contained in this subset an lying in a row or column of the chessboard is even

3 Show that the only polynomial of odd degree satisfying $p\left(x^{2}-1\right)=p(x)^{2}-1$ for all x is $p(x)=x$

