

AoPS Community

Finals 2001

www.artofproblemsolving.com/community/c4695 by Megus, hardsoul, Pascual2005, ehsan2004

Day 1	
1	Prove the following inequality: $x_1 + 2x_2 + 3x_3 + + nx_n \le \frac{n(n-1)}{2} + x_1 + x_2^2 + x_3^3 + + x_n^n$
	where $\forall_{x_i} x_i > 0$
2	Given a regular tetrahedron $ABCD$ with edge length 1 and a point P inside it. What is the maximum value of $ PA + PB + PC + PD $.
3	A sequence $x_0 = A$ and $x_1 = B$ and $x_{n+2} = x_{n+1} + x_n$ is called a Fibonacci type sequence. Call a number C a repeated value if $x_t = x_s = c$ for t different from s . Prove one can choose A and B to have as many repeated value as one likes but never infinite.
Day 2	2
1	Assume that a, b are integers and n is a natural number. $2^n a + b$ is a perfect square for every n . Prove that $a = 0$.
2	Let $ABCD$ be a parallelogram and let K and L be points on the segments BC and CD , respectively, such that $BK \cdot AD = DL \cdot AB$. Let the lines DK and BL intersect at P . Show that $\angle DAP = \angle BAC$.
3	Given positive integers $n_1 < n_2 < < n_{2000} < 10^{100}$. Prove that we can choose from the set $\{n_1,, n_{2000}\}$ nonempty, disjont sets A and B which have the same number of elements, the same sum and the same sum of squares.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱