AoPS Community

Finals 2001

www.artofproblemsolving.com/community/c4695
by Megus, hardsoul, Pascual2005, ehsan2004

Day 1

1 Prove the following inequality:
$x_{1}+2 x_{2}+3 x_{3}+\ldots+n x_{n} \leq \frac{n(n-1)}{2}+x_{1}+x_{2}^{2}+x_{3}^{3}+\ldots+x_{n}^{n}$
where $\forall_{x_{i}} x_{i}>0$
2 Given a regular tetrahedron $A B C D$ with edge length 1 and a point P inside it.
What is the maximum value of $|P A|+|P B|+|P C|+|P D|$.
3 A sequence $x_{0}=A$ and $x_{1}=B$ and $x_{n+2}=x_{n+1}+x_{n}$ is called a Fibonacci type sequence.
Call a number C a repeated value if $x_{t}=x_{s}=c$ for t different from s.
Prove one can choose A and B to have as many repeated value as one likes but never infinite.

Day 2

1 Assume that a, b are integers and n is a natural number. $2^{n} a+b$ is a perfect square for every n. Prove that $a=0$.

2 Let $A B C D$ be a parallelogram and let K and L be points on the segments $B C$ and $C D$, respectively, such that $B K \cdot A D=D L \cdot A B$. Let the lines $D K$ and $B L$ intersect at P. Show that $\measuredangle D A P=\measuredangle B A C$.

3 Given positive integers $n_{1}<n_{2}<\ldots<n_{2000}<10^{100}$. Prove that we can choose from the set $\left\{n_{1}, \ldots, n_{2000}\right\}$ nonempty, disjont sets A and B which have the same number of elements, the same sum and the same sum of squares.

