

AoPS Community

Finals 2002

www.artofproblemsolving.com/community/c4696 by Megus

Da		
1	Find all the natural numbers a, b, c such that:	
	1) $a^2 + 1$ and $b^2 + 1$ a 2) $(a^2 + 1)(b^2 + 1) =$	(c^2+1)
2	On sides <i>AC</i> and <i>BC</i> <i>BKLC</i> were built ex collinear.	C of acute-angled triangle ABC rectangles with equal areas $ACPQ$ and terior. Prove that midpoint of PL , point C and center of circumcircle are
3	Three non-negative in gers k, m by $k + m$ a at least two zeros	ntegers are written on a blackboard. A move is to replace two of the intend $ k - m $. Determine whether we can always end with triplet which has

Day 2

1 $x_1, ..., x_n$ are non-negative reals and $n \ge 3$. Prove that at least one of the following inequalities is true:

$$\sum_{i=1}^{n} \frac{x_i}{x_{i+1} + x_{i+2}} \ge \frac{n}{2},$$
$$\sum_{i=1}^{n} \frac{x_i}{x_{i-1} + x_{i-2}} \ge \frac{n}{2}.$$

- **2** There is given a triangle ABC in a space. A sphere does not intersect the plane of ABC. There are 4 points K, L, M, P on the sphere such that AK, BL, CM are tangent to the sphere and $\frac{AK}{AP} = \frac{BL}{BP} = \frac{CM}{CP}$. Show that the sphere touches the circumsphere of ABCP.
- 3 k is a positive integer. The sequence $a_1, a_2, a_3, ...$ is defined by $a_1 = k + 1$, $a_{n+1} = a_n^2 ka_n + k$. Show that a_m and a_n are coprime (for $m \neq n$).

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱