AoPS Community

Finals 2002
www.artofproblemsolving.com/community/c4696
by Megus

Day 1

1 Find all the natural numbers a, b, c such that:

1) $a^{2}+1$ and $b^{2}+1$ are primes
2) $\left(a^{2}+1\right)\left(b^{2}+1\right)=\left(c^{2}+1\right)$

2 On sides $A C$ and $B C$ of acute-angled triangle $A B C$ rectangles with equal areas $A C P Q$ and $B K L C$ were built exterior. Prove that midpoint of $P L$, point C and center of circumcircle are collinear.

3 Three non-negative integers are written on a blackboard. A move is to replace two of the integers k, m by $k+m$ and $|k-m|$. Determine whether we can always end with triplet which has at least two zeros

Day 2

$1 \quad x_{1}, \ldots, x_{n}$ are non-negative reals and $n \geq 3$. Prove that at least one of the following inequalities is true:

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{x_{i}}{x_{i+1}+x_{i+2}} \geq \frac{n}{2} \\
& \sum_{i=1}^{n} \frac{x_{i}}{x_{i-1}+x_{i-2}} \geq \frac{n}{2} .
\end{aligned}
$$

2 There is given a triangle $A B C$ in a space. A sphere does not intersect the plane of $A B C$. There are 4 points K, L, M, P on the sphere such that $A K, B L, C M$ are tangent to the sphere and $\frac{A K}{A P}=\frac{B L}{B P}=\frac{C M}{C P}$. Show that the sphere touches the circumsphere of $A B C P$.
$3 k$ is a positive integer. The sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by $a_{1}=k+1, a_{n+1}=a_{n}^{2}-k a_{n}+k$. Show that a_{m} and a_{n} are coprime (for $m \neq n$).

