AoPS Community

Finals 2003

www.artofproblemsolving.com/community/c4697
by Amir Hossein, 77ant

1 In an acute-angled triangle $A B C, C D$ is the altitude. A line through the midpoint M of side $A B$ meets the rays $C A$ and $C B$ at K and L respectively such that $C K=C L$. Point S is the circumcenter of the triangle $C K L$. Prove that $S D=S M$.

2 Let $0<a<1$ be a real number. Prove that for all finite, strictly increasing sequences $k_{1}, k_{2}, \ldots, k_{n}$ of non-negative integers we have the inequality

$$
\left(\sum_{i=1}^{n} a^{k_{i}}\right)^{2}<\frac{1+a}{1-a} \sum_{i=1}^{n} a^{2 k_{i}} .
$$

3 Find all polynomials W with integer coefficients satisfying the following condition: For every natural number $n, 2^{n}-1$ is divisible by $W(n)$.

4 A prime number p and integers x, y, z with $0<x<y<z<p$ are given. Show that if the numbers x^{3}, y^{3}, z^{3} give the same remainder when divided by p, then $x^{2}+y^{2}+z^{2}$ is divisible by $x+y+z$.

5 The sphere inscribed in a tetrahedron $A B C D$ touches face $A B C$ at point H. Another sphere touches face $A B C$ at O and the planes containing the other three faces at points exterior to the faces. Prove that if O is the circumcenter of triangle $A B C$, then H is the orthocenter of that triangle.

6 Let n be an even positive integer. Show that there exists a permutation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of the set $\{1,2, \ldots, n\}$, such that for each $i \in\{1,2, \ldots, n\}, x_{i+1}$ is one of the numbers $2 x_{i}, 2 x_{i}-1,2 x_{i}-$ $n, 2 x_{i}-n-1$, where $x_{n+1}=x_{1}$.

