AoPS Community

Finals 2005

www.artofproblemsolving.com/community/c4699
by Megus, yetti, Risk, Zorro, Myth

Day 1

1 Find all triplets (x, y, n) of positive integers which satisfy:

$$
(x-y)^{n}=x y
$$

2 The points A, B, C, D lie in this order on a circle o. The point S lies inside o and has properties $\angle S A D=\angle S C B$ and $\angle S D A=\angle S B C$. Line which in which angle bisector of $\angle A S B$ in included cut the circle in points P and Q. Prove $P S=Q S$.

3 In a matrix $2 n \times 2 n, n \in N$, are $4 n^{2}$ real numbers with a sum equal zero. The absolute value of each of these numbers is not greater than 1 . Prove that the absolute value of a sum of all the numbers from one column or a row doesn't exceed n.

Day 2

1 Given real $c>-2$. Prove that for positive reals x_{1}, \ldots, x_{n} satisfying: $\sum_{i=1}^{n} \sqrt{x_{i}^{2}+c x_{i} x_{i+1}+x_{i+1}^{2}}=$
$\sqrt{c+2}\left(\sum_{i=1}^{n} x_{i}\right)$
holds $c=2$ or $x_{1}=\ldots=x_{n}$
2 Let k be a fixed integer greater than 1, and let $m=4 k^{2}-5$. Show that there exist positive integers a and b such that the sequence $\left(x_{n}\right)$ defined by

$$
x_{0}=a, \quad x_{1}=b, \quad x_{n+2}=x_{n+1}+x_{n} \quad \text { for } \quad n=0,1,2, \ldots,
$$

has all of its terms relatively prime to m.
Proposed by Jaroslaw Wroblewski, Poland
3 Let be a convex polygon with $n>5$ vertices and area 1 . Prove that there exists a convex hexagon inside the given polygon with area at least $\frac{3}{4}$

