

## **AoPS Community**

## Finals 2005

www.artofproblemsolving.com/community/c4699 by Megus, yetti, Risk, Zorro, Myth

| Day   |                                                                                                                                                                                                                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Find all triplets $(x, y, n)$ of positive integers which satisfy:                                                                                                                                                                                                                              |
|       | $(x-y)^n = xy$                                                                                                                                                                                                                                                                                 |
| 2     | The points $A, B, C, D$ lie in this order on a circle $o$ . The point $S$ lies inside $o$ and has properties $\angle SAD = \angle SCB$ and $\angle SDA = \angle SBC$ . Line which in which angle bisector of $\angle ASB$ in included cut the circle in points $P$ and $Q$ . Prove $PS = QS$ . |
| 3     | In a matrix $2n \times 2n$ , $n \in N$ , are $4n^2$ real numbers with a sum equal zero. The absolute value of each of these numbers is not greater than 1. Prove that the absolute value of a sum of all the numbers from one column or a row doesn't exceed $n$ .                             |
| Day 2 |                                                                                                                                                                                                                                                                                                |
| 1     | Given real $c > -2$ . Prove that for positive reals $x_1,, x_n$ satisfying: $\sum_{i=1}^n \sqrt{x_i^2 + cx_i x_{i+1} + x_{i+1}^2} =$                                                                                                                                                           |
|       | $\sqrt{c+2}\left(\sum_{i=1}^{n} x_i\right)$                                                                                                                                                                                                                                                    |
|       | holds $c = 2$ or $x_1 = \ldots = x_n$                                                                                                                                                                                                                                                          |
| 2     | Let k be a fixed integer greater than 1, and let $m = 4k^2 - 5$ . Show that there exist positive integers a and b such that the sequence $(x_n)$ defined by                                                                                                                                    |
|       | $x_0 = a$ , $x_1 = b$ , $x_{n+2} = x_{n+1} + x_n$ for $n = 0, 1, 2,,$                                                                                                                                                                                                                          |
|       | has all of its terms relatively prime to $m$ .                                                                                                                                                                                                                                                 |
|       | Proposed by Jaroslaw Wroblewski, Poland                                                                                                                                                                                                                                                        |
| 3     | Let be a convex polygon with $n > 5$ vertices and area 1. Prove that there exists a convex hexagon inside the given polygon with area at least $\frac{3}{4}$                                                                                                                                   |

## AoPS Online 🟟 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.