Art of Problem Solving

AoPS Community

Finals 2007
www.artofproblemsolving.com/community/c4701
by Megus

Day 1

1 1. In acute triangle $A B C$ point O is circumcenter, segment $C D$ is a height, point E lies on side $A B$ and point M is a midpoint of $C E$. Line through M perpendicular to $O M$ cuts lines $A C$ and $B C$ respectively in K, L. Prove that $\frac{L M}{M K}=\frac{A D}{D B}$

2 2. Positive integer will be called white, if it is equal to 1 or is a product of even number of primes (not necessarily distinct). Rest of the positive integers will be called black. Determine whether there exists a positive integer which sum of white divisors is equal to sum of black divisors

3 3. Plane is divided with horizontal and vertical lines into unit squares. Into each square we write a positive integer so that each positive integer appears exactly once. Determine whether it is possible to write numbers in such a way, that each written number is a divisor of a sum of its four neighbours.

Day 2

4 4. Given is an integer $n \geq 1$. Find out the number of possible values of products $k \cdot m$, where k, m are integers satisfying $n^{2} \leq k \leq m \leq(n+1)^{2}$.

5 5. In tetrahedron $A B C D$ following equalities hold: $\angle B A C+\angle B D C=\angle A B D+\angle A C D \angle B A D+$ $\angle B C D=\angle A B C+\angle A D C$
Prove that center of sphere circumscribed about ABCD lies on a line through midpoints of $A B$ and $C D$.

6 6. Sequence $a_{0}, a_{1}, a_{2}, \ldots$ is determined by $a_{0}=-1$ and $a_{n}+\frac{a_{n-1}}{2}+\frac{a_{n-2}}{3}+\ldots+\frac{a_{1}}{n}+\frac{a_{0}}{n+1}=0$ for $n \geq 1$
Prove that $a_{n}>0$ for $n \geq 1$

