

AoPS Community

Finals 2010

www.artofproblemsolving.com/community/c4704 by TomciO

Day 1	
1	The integer number $n > 1$ is given and a set $S \subset \{0, 1, 2,, n-1\}$ with $ S > \frac{3}{4}n$. Prove that there exist integer numbers a, b, c such that the remainders after the division by n of the numbers:
	a, b, c, a+b, b+c, c+a, a+b+c
	belong to S.
2	Positive rational number a and b satisfy the equality
	$a^3 + 4a^2b = 4a^2 + b^4.$
	Prove that the number $\sqrt{a}-1$ is a square of a rational number.
3	$ABCD$ is a parallelogram in which angle DAB is acute. Points A, P, B, D lie on one circle in exactly this order. Lines AP and CD intersect in Q . Point O is the circumcenter of the triangle CPQ . Prove that if $D \neq O$ then the lines AD and DO are perpendicular.
Day 2	
1	On the side BC of the triangle ABC there are two points D and E such that $BD < BE$. Denote by p_1 and p_2 the perimeters of triangles ABC and ADE respectively. Prove that
	$p_1 > p_2 + 2 \cdot \min\{BD, EC\}.$
2	Prime number $p > 3$ is congruent to 2 modulo 3. Let $a_k = k^2 + k + 1$ for $k = 1, 2,, p - 1$. Prove that product $a_1a_2a_{p-1}$ is congruent to 3 modulo p .
3	Real number $C > 1$ is given. Sequence of positive real numbers a_1, a_2, a_3, \ldots , in which $a_1 = 1$ and $a_2 = 2$, satisfy the conditions
	$a_{mn} = a_m a_n,$
	$a_{m+n} \le C(a_m + a_n),$
	for $m, n = 1, 2, 3,$ Prove that $a_n = n$ for $n = 1, 2, 3,$
	, , , , , · · · · · , , - ,

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱 🙀

Art of Problem Solving is an ACS WASC Accredited School.