AoPS Community

Finals 2010

www.artofproblemsolving.com/community/c4704
by TomciO

Day 1

1 The integer number $n>1$ is given and a set $S \subset\{0,1,2, \ldots, n-1\}$ with $|S|>\frac{3}{4} n$. Prove that there exist integer numbers a, b, c such that the remainders after the division by n of the numbers:

$$
a, b, c, a+b, b+c, c+a, a+b+c
$$

belong to S.
2 Positive rational number a and b satisfy the equality

$$
a^{3}+4 a^{2} b=4 a^{2}+b^{4} .
$$

Prove that the number $\sqrt{a}-1$ is a square of a rational number.
$3 \quad A B C D$ is a parallelogram in which angle $D A B$ is acute. Points A, P, B, D lie on one circle in exactly this order. Lines $A P$ and $C D$ intersect in Q. Point O is the circumcenter of the triangle $C P Q$. Prove that if $D \neq O$ then the lines $A D$ and $D O$ are perpendicular.

Day 2

$1 \quad$ On the side $B C$ of the triangle $A B C$ there are two points D and E such that $B D<B E$. Denote by p_{1} and p_{2} the perimeters of triangles $A B C$ and $A D E$ respectively. Prove that

$$
p_{1}>p_{2}+2 \cdot \min \{B D, E C\} .
$$

2 Prime number $p>3$ is congruent to 2 modulo 3 . Let $a_{k}=k^{2}+k+1$ for $k=1,2, \ldots, p-1$. Prove that product $a_{1} a_{2} \ldots a_{p-1}$ is congruent to 3 modulo p.

3 Real number $C>1$ is given. Sequence of positive real numbers $a_{1}, a_{2}, a_{3}, \ldots$, in which $a_{1}=1$ and $a_{2}=2$, satisfy the conditions

$$
\begin{gathered}
a_{m n}=a_{m} a_{n}, \\
a_{m+n} \leq C\left(a_{m}+a_{n}\right),
\end{gathered}
$$

for $m, n=1,2,3, \ldots$ Prove that $a_{n}=n$ for $n=1,2,3, \ldots$.

