AoPS Community

Finals 2011

www.artofproblemsolving.com/community/c4705 by colosimo, mymath7

Day 1

1 Find all integers $n \geq 1$ such that there exists a permutation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $(1,2, \ldots, n)$ such that $a_{1}+a_{2}+\ldots+a_{k}$ is divisible by k for $k=1,2, \ldots, n$

2 The incircle of triangle $A B C$ is tangent to $B C, C A, A B$ at D, E, F respectively. Consider the triangle formed by the line joining the midpoints of $A E, A F$, the line joining the midpoints of $B F, B D$, and the line joining the midpoints of $C D, C E$. Prove that the circumcenter of this triangle coincides with the circumcenter of triangle $A B C$.

3 Let $n \geq 3$ be an odd integer. Determine how many real solutions there are to the set of n equations

$$
\left\{\begin{aligned}
x_{1}\left(x_{1}+1\right) & =x_{2}\left(x_{2}-1\right) \\
x_{2}\left(x_{2}+1\right) & =x_{3}\left(x_{3}-1\right) \\
& \vdots \\
x_{n}\left(x_{n}+1\right) & =x_{1}\left(x_{1}-1\right)
\end{aligned}\right.
$$

Day 2

1 Determine all pairs of functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that for any $x, y \in \mathbb{R}$,

$$
f(x) f(y)=g(x) g(y)+g(x)+g(y) .
$$

2 In a tetrahedron $A B C D$, the four altitudes are concurrent at H. The line $D H$ intersects the plane $A B C$ at P and the circumsphere of $A B C D$ at $Q \neq D$. Prove that $P Q=2 H P$.

3 Prove that it is impossible for polynomials $f_{1}(x), f_{2}(x), f_{3}(x), f_{4}(x) \in \mathbb{Q}[x]$ to satisfy

$$
f_{1}^{2}(x)+f_{2}^{2}(x)+f_{3}^{2}(x)+f_{4}^{2}(x)=x^{2}+7
$$

