

AoPS Community

Finals 2011

www.artofproblemsolving.com/community/c4705 by colosimo, mymath7

1	Find all integers $n \ge 1$ such that there exists a permutation $(a_1, a_2,, a_n)$ of $(1, 2,, n)$ such that $a_1 + a_2 + + a_k$ is divisible by k for $k = 1, 2,, n$
2	The incircle of triangle ABC is tangent to BC, CA, AB at D, E, F respectively. Consider the triangle formed by the line joining the midpoints of AE, AF , the line joining the midpoints of BF, BD , and the line joining the midpoints of CD, CE . Prove that the circumcenter of this triangle coincides with the circumcenter of triangle ABC .
3	Let $n \ge 3$ be an odd integer. Determine how many real solutions there are to the set of n equations $\begin{cases} x_1(x_1+1) = x_2(x_2-1) \\ x_2(x_2+1) = x_3(x_3-1) \\ \vdots \end{cases}$

Day 2

1 Determine all pairs of functions $f, g : \mathbb{R} \to \mathbb{R}$ such that for any $x, y \in \mathbb{R}$,

$$f(x)f(y) = g(x)g(y) + g(x) + g(y).$$

 $x_n(x_n+1) = x_1(x_1-1)$

2 In a tetrahedron *ABCD*, the four altitudes are concurrent at *H*. The line *DH* intersects the plane *ABC* at *P* and the circumsphere of *ABCD* at $Q \neq D$. Prove that PQ = 2HP.

3 Prove that it is impossible for polynomials $f_1(x), f_2(x), f_3(x), f_4(x) \in \mathbb{Q}[x]$ to satisfy

$$f_1^2(x) + f_2^2(x) + f_3^2(x) + f_4^2(x) = x^2 + 7.$$

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.