## AoPS Community

## Finals 2013

www.artofproblemsolving.com/community/c4706
by Duch133

## Day 1

1 Find all solutions of the following equation in integers $x, y: x^{4}+y=x^{3}+y^{2}$
2 There are given integers $a$ and $b$ such that $a$ is different from 0 and the number $3+a+b^{2}$ is divisible by $6 a$. Prove that $a$ is negative.

3 Given is a quadrilateral $A B C D$ in which we can inscribe circle. The segments $A B, B C, C D$ and $D A$ are the diameters of the circles $o 1, o 2, o 3$ and $o 4$, respectively. Prove that there exists a circle tangent to all of the circles $o 1, o 2, o 3$ and $o 4$.

## Day 2

4 Given is a tetrahedron $A B C D$ in which $A B=C D$ and the sum of measures of the angles $B A D$ and $B C D$ equals 180 degrees. Prove that the measure of the angle $B A D$ is larger than the measure of the angle $A D C$.

5 Let k,m and n be three different positive integers. Prove that

$$
\left(k-\frac{1}{k}\right)\left(m-\frac{1}{m}\right)\left(n-\frac{1}{n}\right) \leq k m n-(k+m+n) .
$$

6 For each positive integer $n$ determine the maximum number of points in space creating the set $A$ which has the following properties: 1) the coordinates of every point from the set $A$ are integers from the range $[0, n] 2)$ for each pair of different points $\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)$ belonging to the set $A$ it is satisfied at least one of the following inequalities $x_{1}<y_{1}, x_{2}<y_{2}, x_{3}<y_{3}$ and at least one of the following inequalities $x_{1}>y_{1}, x_{2}>y_{2}, x_{3}>y_{3}$.

