Art of Problem Solving

AoPS Community

Vietnam National Olympiad 1981
www.artofproblemsolving.com/community/c4710
by Goutham, tchebytchev

Day 1

1 Prove that a triangle $A B C$ is right-angled if and only if

$$
\sin A+\sin B+\sin C=\cos A+\cos B+\cos C+1
$$

2 Consider the polynomials

$$
\begin{gathered}
f(p)=p^{12}-p^{11}+3 p^{10}+11 p^{3}-p^{2}+23 p+30 ; \\
g(p)=p^{3}+2 p+m .
\end{gathered}
$$

Find all integral values of m for which f is divisible by g.
$3 \quad$ A plane ρ and two points M, N outside it are given. Determine the point A on ρ for which $\frac{A M}{A N}$ is minimal.

Day 2

1 Solve the system of equations

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}+t^{2}=50 ; \\
x^{2}-y^{2}+z^{2}-t^{2}=-24 ; \\
x y=z t ; \\
x-y+z-t=0 .
\end{gathered}
$$

2 Let p, q be real numbers with $0<p<q$ and let $t_{1}, t_{2}, \cdots, t_{n}$ be real numbers in the interval $[p, q]$. Denote by A and B the arithmetic means of $t_{1}, t_{2}, \cdots, t_{n}$ and of $t_{1}^{2}, t_{2}^{2}, \cdots, t_{n}^{2}$, respectively. Prove that

$$
\frac{A^{2}}{B} \geq \frac{4 p q}{(p+q)^{2}}
$$

3 Two circles k_{1} and k_{2} with centers O_{1} and O_{2} respectively touch externally at A. Let M be a point inside k_{2} and outside the line $O_{1} O_{2}$. Find a line d through M which intersects k_{1} and k_{2} again at B and C respectively so that the circumcircle of $\triangle A B C$ is tangent to $O_{1} O_{2}$.

