Art of Problem Solving

AoPS Community

Vietnam National Olympiad 1985
www.artofproblemsolving.com/community/c4714
by April

Day 1

$1 \quad$ Find all pairs (x, y) of integers such that $x^{3}-y^{3}=2 x y+8$.
2 Find all functions $f: \mathbb{Z} \mapsto \mathbb{R}$ which satisfy:
i) $f(x) f(y)=f(x+y)+f(x-y)$ for all integers x, y
ii) $f(0) \neq 0$
iii) $f(1)=\frac{5}{2}$

3 A parallelepiped with the side lengths a, b, c is cut by a plane through its intersection of diagonals which is perpendicular to one of these diagonals. Calculate the area of the intersection of the plane and the parallelepiped.

Day 2

1 Let a, b and m be positive integers. Prove that there exists a positive integer n such that $\left(a^{n}-1\right) b$ is divisible by m if and only if $\operatorname{gcd}(a b, m)=\operatorname{gcd}(b, m)$.

2 Find all real values of parameter a for which the equation in x

$$
16 x^{4}-a x^{3}+(2 a+17) x^{2}-a x+16=0
$$

has four solutions which form an arithmetic progression.
3 A triangular pyramid $O . A B C$ with base $A B C$ has the property that the lengths of the altitudes from A, B and C are not less than $\frac{O B+O C}{2}, \frac{O C+O A}{2}$ and $\frac{O A+O B}{2}$, respectively. Given that the area of $A B C$ is S, calculate the volume of the pyramid.

