

AoPS Community

Vietnam National Olympiad 1985

www.artofproblemsolving.com/community/c4714 by April

Day 1	
1	Find all pairs (x, y) of integers such that $x^3 - y^3 = 2xy + 8$.
2	Find all functions $f: \mathbb{Z} \mapsto \mathbb{R}$ which satisfy: i) $f(x)f(y) = f(x+y) + f(x-y)$ for all integers x, y ii) $f(0) \neq 0$ iii) $f(1) = \frac{5}{2}$
3	A parallelepiped with the side lengths <i>a</i> , <i>b</i> , <i>c</i> is cut by a plane through its intersection of diag- onals which is perpendicular to one of these diagonals. Calculate the area of the intersection of the plane and the parallelepiped.
Day 2	2
1	Let <i>a</i> , <i>b</i> and <i>m</i> be positive integers. Prove that there exists a positive integer <i>n</i> such that $(a^n-1)b$ is divisible by <i>m</i> if and only if $gcd(ab, m) = gcd(b, m)$.
2	Find all real values of parameter a for which the equation in x
	$16x^4 - ax^3 + (2a + 17)x^2 - ax + 16 = 0$
	has four solutions which form an arithmetic progression.
3	A triangular pyramid $O.ABC$ with base ABC has the property that the lengths of the altitudes from A , B and C are not less than $\frac{OB+OC}{2}$, $\frac{OC+OA}{2}$ and $\frac{OA+OB}{2}$, respectively. Given that the area of ABC is S , calculate the volume of the pyramid.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱