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Day 1
1 Let % < ai,as,...,a, <5be given real numbers and let x, x9, ..., z,, be real numbers satisfy-
ing 422 — 4a;x; + (a; — 1)* < 0. Prove that
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2 Let R, r be respectively the circumradius and inradius of a regular 1986-gonal pyramid. Prove
that
R 1
—>1+4 —
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and find the total area of the surface of the pyramid when the equality occurs.

3 Suppose M (y) is a polynomial of degree n such that M (y) = 2¥ fory = 1,2,...,n+1. Compute
M(n+2).

Day 2

1 Let ABCD be a square of side 2a. An equilateral triangle AM B is constructed in the plane
through AB perpendicular to the plane of the square. A point S moves on AB such that SB =
x. Let P be the projection of M on SC and FE, O be the midpoints of AB and C M respectively.
(a) Find the locus of P as S moves on AB.
(b) Find the maximum and minimum lengths of SO.

2 Find all n > 1 such that the inequality

n n—1
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holds for all real numbers z1, zo, . . ., z,.

3 A sequence of positive integers is constructed as follows: the first term is 1, the following two
terms are 2, 4, the following three terms are 5, 7, 9, the following four terms are 10, 12, 14, 16,
etc. Find the n-th term of the sequence.
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