AoPS Community

Vietnam National Olympiad 1986

www.artofproblemsolving.com/community/c4715
by April

Day 1

1 Let $\frac{1}{2} \leq a_{1}, a_{2}, \ldots, a_{n} \leq 5$ be given real numbers and let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying $4 x_{i}^{2}-4 a_{i} x_{i}+\left(a_{i}-1\right)^{2} \leq 0$. Prove that

$$
\sqrt{\sum_{i=1}^{n} \frac{x_{i}^{2}}{n}} \leq \sum_{i=1}^{n} \frac{x_{i}}{n}+1
$$

2 Let R, r be respectively the circumradius and inradius of a regular 1986-gonal pyramid. Prove that

$$
\frac{R}{r} \geq 1+\frac{1}{\cos \frac{\pi}{1986}}
$$

and find the total area of the surface of the pyramid when the equality occurs.
3 Suppose $M(y)$ is a polynomial of degree n such that $M(y)=2^{y}$ for $y=1,2, \ldots, n+1$. Compute $M(n+2)$.

Day 2

1 Let $A B C D$ be a square of side $2 a$. An equilateral triangle $A M B$ is constructed in the plane through $A B$ perpendicular to the plane of the square. A point S moves on $A B$ such that $S B=$ x. Let P be the projection of M on $S C$ and E, O be the midpoints of $A B$ and $C M$ respectively. (a) Find the locus of P as S moves on $A B$.
(b) Find the maximum and minimum lengths of $S O$.

2 Find all $n>1$ such that the inequality

$$
\sum_{i=1}^{n} x_{i}^{2} \geq x_{n} \sum_{i=1}^{n-1} x_{i}
$$

holds for all real numbers $x_{1}, x_{2}, \ldots, x_{n}$.
3 A sequence of positive integers is constructed as follows: the first term is 1 , the following two terms are 2,4 , the following three terms are $5,7,9$, the following four terms are $10,12,14,16$, etc. Find the n-th term of the sequence.

