

## **AoPS Community**

## Vietnam National Olympiad 1987

www.artofproblemsolving.com/community/c4716 by April

## Day 1

| I      | Let $u_1, u_2,, u_{1987}$ be an arithmetic progression with $u_1 = \frac{\pi}{1987}$ and the common difference $\frac{\pi}{3974}$ . Evaluate<br>$S = \sum_{\epsilon_i \in \{-1,1\}} \cos(\epsilon_1 u_1 + \epsilon_2 u_2 + \dots + \epsilon_{1987} u_{1987})$                       |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2      | Sequences $(x_n)$ and $(y_n)$ are constructed as follows: $x_0 = 365$ , $x_{n+1} = x_n (x^{1986} + 1) + 1622$ , and $y_0 = 16$ , $y_{n+1} = y_n (y^3 + 1) - 1952$ , for all $n \ge 0$ . Prove that $ x_n - y_k  \ne 0$ for any positive integers $n$ , $k$ .                        |
| 3      | Let be given $n \ge 2$ lines on a plane, not all concurrent and no two parallel. Prove that there is a point which belongs to exactly two of the given lines.                                                                                                                       |
| Day    |                                                                                                                                                                                                                                                                                     |
| Day 2  |                                                                                                                                                                                                                                                                                     |
| 1<br>1 | Let $a_1, a_2, \ldots, a_n$ be positive real numbers ( $n \ge 2$ ) whose sum is $S$ . Show that $\sum_{i=1}^n \frac{a_i^{2^k}}{(S-a_i)^{2^t-1}} \ge \frac{S^{1+2^k-2^t}}{(n-1)^{2^t-1}n^{2^k-2^t}}$                                                                                 |
| 1      | Let $a_1, a_2, \ldots, a_n$ be positive real numbers $(n \ge 2)$ whose sum is $S$ . Show that<br>$\sum_{i=1}^n \frac{a_i^{2^k}}{(S-a_i)^{2^t-1}} \ge \frac{S^{1+2^k-2^t}}{(n-1)^{2^t-1}n^{2^k-2^t}}$ for any nonnegative integers $k, t$ with $k \ge t$ . When does equality occur? |

**3** Prove that among any five distinct rays Ox, Oy, Oz, Ot, Or in space there exist two which form an angle less than or equal to  $90^{\circ}$ .

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.