Art of Problem Solving

AoPS Community

Vietnam National Olympiad 1987
www.artofproblemsolving.com/community/c4716
by April

Day 1

$1 \quad$ Let $u_{1}, u_{2}, \ldots, u_{1987}$ be an arithmetic progression with $u_{1}=\frac{\pi}{1987}$ and the common difference $\frac{\pi}{3974}$. Evaluate

$$
S=\sum_{\epsilon_{i} \in\{-1,1\}} \cos \left(\epsilon_{1} u_{1}+\epsilon_{2} u_{2}+\cdots+\epsilon_{1987} u_{1987}\right)
$$

2 Sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are constructed as follows: $x_{0}=365, x_{n+1}=x_{n}\left(x^{1986}+1\right)+1622$, and $y_{0}=16, y_{n+1}=y_{n}\left(y^{3}+1\right)-1952$, for all $n \geq 0$. Prove that $\left|x_{n}-y_{k}\right| \neq 0$ for any positive integers n, k.

3 Let be given $n \geq 2$ lines on a plane, not all concurrent and no two parallel. Prove that there is a point which belongs to exactly two of the given lines.

Day 2

1 Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers ($n \geq 2$) whose sum is S. Show that

$$
\sum_{i=1}^{n} \frac{a_{i}^{2^{k}}}{\left(S-a_{i}\right)^{2^{t}-1}} \geq \frac{S^{1+2^{k}-2^{t}}}{(n-1)^{2^{t}-1} n^{2^{k}-2^{t}}}
$$

for any nonnegative integers k, t with $k \geq t$. When does equality occur?
2 Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a differentiable function. Suppose that $|f(x)| \leq 5$ and $f(x) f^{\prime}(x) \geq \sin x$ for all $x \geq 0$. Prove that there exists $\lim _{x \rightarrow+\infty} f(x)$.

3 Prove that among any five distinct rays $O x, O y, O z, O t, O r$ in space there exist two which form an angle less than or equal to 90°.

