Art of Problem Solving

AoPS Community

Vietnam National Olympiad 1989

www.artofproblemsolving.com/community/c4718 by April

Day 1

1 Let n and N be natural number. Prove that for any $\alpha, 0 \leq \alpha \leq N$, and any real x, it holds that

$$
\left|\sum_{k=0}^{n} \frac{\sin ((\alpha+k) x)}{N+k}\right| \leq \min \left\{(n+1)|x|, \frac{1}{N\left|\sin \frac{x}{2}\right|}\right\}
$$

2 The Fibonacci sequence is defined by $F_{1}=F_{2}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for $n>1$. Let $f(x)=1985 x^{2}+1956 x+1960$. Prove that there exist infinitely many natural numbers n for which $f\left(F_{n}\right)$ is divisible by 1989 . Does there exist n for which $f\left(F_{n}\right)+2$ is divisible by 1989 ?

3 A square $A B C D$ of side length 2 is given on a plane. The segment $A B$ is moved continuously towards $C D$ until A and C coincide with C and D, respectively. Let S be the area of the region formed by the segment $A B$ while moving. Prove that $A B$ can be moved in such a way that $S<\frac{5 \pi}{6}$.

Day 2

$1 \quad$ Are there integers x, y, not both divisible by 5 , such that $x^{2}+19 y^{2}=198 \cdot 10^{1989}$?
2 The sequence of polynomials $\left\{P_{n}(x)\right\}_{n=0}^{+\infty}$ is defined inductively by $P_{0}(x)=0$ and $P_{n+1}(x)=$ $P_{n}(x)+\frac{x-P_{n}^{2}(x)}{2}$. Prove that for any $x \in[0,1]$ and any natural number n it holds that $0 \leq$ $\sqrt{x}-P_{n}(x) \leq \frac{2}{n+1}$.

3 Let be given a parallelepiped $A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Show that if a line Δ intersects three of the lines $A B^{\prime}, B C^{\prime}, C D^{\prime}, D A^{\prime}$, then it intersects also the fourth line.

