

AoPS Community

Vietnam National Olympiad 1989

www.artofproblemsolving.com/community/c4718 by April

Day 1

1 Let *n* and *N* be natural number. Prove that for any α , $0 \le \alpha \le N$, and any real *x*, it holds that

$$\left|\sum_{k=0}^{n} \frac{\sin((\alpha+k)x)}{N+k}\right| \le \min\{(n+1)|x|, \frac{1}{N|\sin\frac{x}{2}|}\}$$

- **2** The Fibonacci sequence is defined by $F_1 = F_2 = 1$ and $F_{n+1} = F_n + F_{n-1}$ for n > 1. Let $f(x) = 1985x^2 + 1956x + 1960$. Prove that there exist infinitely many natural numbers n for which $f(F_n)$ is divisible by 1989. Does there exist n for which $f(F_n) + 2$ is divisible by 1989?
- **3** A square *ABCD* of side length 2 is given on a plane. The segment *AB* is moved continuously towards *CD* until *A* and *C* coincide with *C* and *D*, respectively. Let *S* be the area of the region formed by the segment *AB* while moving. Prove that *AB* can be moved in such a way that $S < \frac{5\pi}{6}$.

Day 2

- 1 Are there integers x, y, not both divisible by 5, such that $x^2 + 19y^2 = 198 \cdot 10^{1989}$?
- **2** The sequence of polynomials $\{P_n(x)\}_{n=0}^{+\infty}$ is defined inductively by $P_0(x) = 0$ and $P_{n+1}(x) = P_n(x) + \frac{x P_n^2(x)}{2}$. Prove that for any $x \in [0, 1]$ and any natural number n it holds that $0 \le \sqrt{x} P_n(x) \le \frac{2}{n+1}$.
- **3** Let be given a parallelepiped ABCD.A'B'C'D'. Show that if a line Δ intersects three of the lines AB', BC', CD', DA', then it intersects also the fourth line.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

© 2020 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.