AoPS Community

Vietnam National Olympiad 1991

www.artofproblemsolving.com/community/c4720
by M4RIO, chien than

Day 1

1 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:
$\frac{f(x y)+f(x z)}{2}-f(x) f(y z) \geq \frac{1}{4}$ for all $x, y, z \in \mathbb{R}$
2 Let $k>1$ be an odd integer. For every positive integer n, let $f(n)$ be the greatest positive integer for which $2^{f(n)}$ divides $k^{n}-1$. Find $f(n)$ in terms of k and n.

3 Three mutually perpendicular rays O_{x}, O_{y}, O_{z} and three points A, B, C on O_{x}, O_{y}, O_{z}, respectively. A variable sphere through A, B, C meets O_{x}, O_{y}, O_{z} again at $A^{\prime}, B^{\prime}, C^{\prime}$, respectively. Let M and M^{\prime} be the centroids of triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$. Find the locus of the midpoint of $M M^{\prime}$.

Day 2

11991 students sit around a circle and play the following game. Starting from some student A and counting clockwise, each student on turn says a number. The numbers are $1,2,3,1,2,3, \ldots$ A student who says 2 or 3 must leave the circle. The game is over when there is only one student left. What position was the remaining student sitting at the beginning of the game?

2 Let G be centroid and R the circunradius of a triangle $A B C$. The extensions of $G A, G B, G C$ meet the circuncircle again at D, E, F. Prove that:
$\frac{3}{R} \leq \frac{1}{G D}+\frac{1}{G E}+\frac{1}{G F} \leq \sqrt{3} \leq \frac{1}{A B}+\frac{1}{B C}+\frac{1}{C A}$
3 Prove that: $\frac{x^{2} y}{z}+\frac{y^{2} z}{x}+\frac{z^{2} x}{y} \geq x^{2}+y^{2}+z^{2}$
where $x ; y ; z$ are real numbers saisfying $x \geq y \geq z \geq 0$

