

AoPS Community

1991 Vietnam National Olympiad

Vietnam National Olympiad 1991

www.artofproblemsolving.com/community/c4720 by M4RI0, chien than

Day 1	
1	Find all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying: $\frac{f(xy)+f(xz)}{2} - f(x)f(yz) \ge \frac{1}{4}$ for all $x, y, z \in \mathbb{R}$
2	Let $k > 1$ be an odd integer. For every positive integer n, let $f(n)$ be the greatest positive integer for which $2^{f(n)}$ divides $k^n - 1$. Find $f(n)$ in terms of k and n .
3	Three mutually perpendicular rays O_x, O_y, O_z and three points A, B, C on O_x, O_y, O_z , respectively. A variable sphere through A, B, C meets O_x, O_y, O_z again at A', B', C' , respectively. Let M and M' be the centroids of triangles ABC and $A'B'C'$. Find the locus of the midpoint of MM' .
Day 2	
1	1991 students sit around a circle and play the following game. Starting from some student A and counting clockwise, each student on turn says a number. The numbers are $1, 2, 3, 1, 2, 3,$ A student who says 2 or 3 must leave the circle. The game is over when there is only one student left. What position was the remaining student sitting at the beginning of the game?
2	Let <i>G</i> be centroid and <i>R</i> the circunradius of a triangle <i>ABC</i> . The extensions of <i>GA</i> , <i>GB</i> , <i>GC</i> meet the circuncircle again at <i>D</i> , <i>E</i> , <i>F</i> . Prove that: $\frac{3}{R} \leq \frac{1}{GD} + \frac{1}{GE} + \frac{1}{GF} \leq \sqrt{3} \leq \frac{1}{AB} + \frac{1}{BC} + \frac{1}{CA}$
3	Prove that: $\frac{x^2y}{z} + \frac{y^2z}{x} + \frac{z^2x}{y} \ge x^2 + y^2 + z^2$ where $x; y; z$ are real numbers satisfying $x \ge y \ge z \ge 0$

AoPS Online 🔯 AoPS Academy 🗿 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.