Art of Problem Solving

AoPS Community

Vietnam National Olympiad 1994

www.artofproblemsolving.com/community/c4723
by N.T.TUAN

Day 1

1 Find all real solutions to

$$
\begin{aligned}
& x^{3}+3 x-3+\ln \left(x^{2}-x+1\right)=y, \\
& y^{3}+3 y-3+\ln \left(y^{2}-y+1\right)=z, \\
& z^{3}+3 z-3+\ln \left(z^{2}-z+1\right)=x .
\end{aligned}
$$

$2 A B C$ is a triangle. Reflect each vertex in the opposite side to get the triangle $A^{\prime} B^{\prime} C^{\prime}$. Find a necessary and sufficient condition on $A B C$ for $A^{\prime} B^{\prime} C^{\prime}$ to be equilateral.

3 Define the sequence $\left\{x_{n}\right\}$ by $x_{0}=a \in(0,1)$ and $x_{n+1}=\frac{4}{\pi^{2}}\left(\cos ^{-1} x_{n}+\frac{\pi}{2}\right) \sin ^{-1} x_{n}(n=$ $0,1,2, \ldots)$. Show that the sequence converges and find its limit.

Day 2

1 There are $n+1$ containers arranged in a circle. One container has n stones, the others are empty. A move is to choose two containers A and B, take a stone from A and put it in one of the containers adjacent to B, and to take a stone from B and put it in one of the containers adjacent to A. We can take $A=B$. For which n is it possible by series of moves to end up with one stone in each container except that which originally held n stones.
$2 \quad S$ is a sphere center $O . G$ and G^{\prime} are two perpendicular great circles on S. Take A, B, C on G and D on G^{\prime} such that the altitudes of the tetrahedron $A B C D$ intersect at a point. Find the locus of the intersection.

3 Do there exist polynomials $p(x), q(x), r(x)$ whose coefficients are positive integers such that $p(x)=\left(x^{2}-3 x+3\right) q(x)$ and $q(x)=\left(\frac{x^{2}}{20}-\frac{x}{15}+\frac{1}{12}\right) r(x)$?

