Art of Problem Solving

AoPS Community

Vietnam National Olympiad 1997

www.artofproblemsolving.com/community/c4726
by mr.danh

Day 1

1 Given a circle (O, R). A point P lies inside the circle, $O P=d, d_{j} R$. We consider quadrilaterals $A B C D$, inscribed in (0), such that $A C$ is perp to $B D$ at point P. Evaluate the maximum and minimum values of the perimeter of $A B C D$ in terms of R and d.

2 Let n be an integer which is greater than 1 , not divisible by 1997.
Let $a_{m}=m+\frac{m n}{1997}$ for all $\mathrm{m}=1,2, . ., 1996 b_{m}=m+\frac{1997 m}{n}$ for all $\mathrm{m}=1,2, . ., \mathrm{n}-1$
We arrange the terms of two sequence $\left(a_{i}\right),\left(b_{j}\right)$ in the ascending order to form a new sequence $c_{1} \leq c_{2} \leq \ldots \leq c_{1995+n}$
Prove that $c_{k+1}-c_{k}<2$ for all $\mathrm{k}=1,2, \ldots, 1994+\mathrm{n}$
3 Find the number of functions $f: \mathbb{N} \rightarrow \mathbb{N}$ which satisfying:
(i) $f(1)=1$
(ii) $f(n) f(n+2)=f^{2}(n+1)+1997$ for every natural numbers n .

Day 2

$1 \quad$ Let $k=\sqrt[3]{3}$.
a, Find all polynomials $p(x)$ with rationl coefficients whose degree are as least as possible such that $p\left(k+k^{2}\right)=3+k$.
b, Does there exist a polynomial $p(x)$ with integer coefficients satisfying $p\left(k+k^{2}\right)=3+k$
2 Prove that for evey positive integer n, there exits a positive integer kuch that $2^{n} \mid 19^{k}-97$
3 In the unit cube, given 75 points, no three of which are collinear. Prove that there exits a triangle whose vertices are among the given points and whose area is not greater than 7/72.

