Art of Problem Solving

## AoPS Community

Vietnam National Olympiad 1998
www.artofproblemsolving.com/community/c4727
by N.T.TUAN

## Day 1

1 Let $a \geq 1$ be a real number. Put $x_{1}=a, x_{n+1}=1+\ln \left(\frac{x_{n}^{2}}{1+\ln x_{n}}\right)(n=1,2, \ldots)$. Prove that the sequence $\left\{x_{n}\right\}$ converges and find its limit.

2 Let be given a tetrahedron whose circumcenter is $O$. Draw diameters $A A_{1}, B B_{1}, C C_{1}, D D_{1}$ of the circumsphere of $A B C D$. Let $A_{0}, B_{0}, C_{0}, D_{0}$ be the centroids of triangle $B C D, C D A, D A B, A B C$. Prove that $A_{0} A_{1}, B_{0} B_{1}, C_{0} C_{1}, D_{0} D_{1}$ are concurrent at a point, say, $F$. Prove that the line through $F$ and a midpoint of a side of $A B C D$ is perpendicular to the opposite side.

3 The sequence $\left\{a_{n}\right\}_{n \geq 0}$ is defined by $a_{0}=20, a_{1}=100, a_{n+2}=4 a_{n+1}+5 a_{n}+20(n=0,1,2, \ldots)$. Find the smallest positive integer $h$ satisfying 1998| $a_{n+h}-a_{n} \forall n=0,1,2, \ldots$

## Day 2

1 Does there exist an infinite sequence $\left\{x_{n}\right\}$ of reals satisfying the following conditions i) $\left|x_{n}\right| \leq 0,666$ for all $n=1,2, \ldots$
ii) $\left|x_{m}-x_{n}\right| \geq \frac{1}{n(n+1)}+\frac{1}{m(m+1)}$ for all $m \neq n$ ?

2 Find minimum value of $F(x, y)=\sqrt{(x+1)^{2}+(y-1)^{2}}+\sqrt{(x-1)^{2}+(y+1)^{2}}+\sqrt{(x+2)^{2}+(y+2)^{2}}$, where $x, y \in \mathbb{R}$.

3 Find all positive integer $n$ such that there exists a $P \in \mathbb{R}[x]$ satisfying $P\left(x^{1998}-x^{-1998}\right)=$ $x^{n}-x^{-n} \forall x \in \mathbb{R}-\{0\}$.

