AoPS Community

Junior Balkan MO 2017

www.artofproblemsolving.com/community/c472784
by sqing

1 Determine all the sets of six consecutive positive integers such that the product of some two of them. added to the product of some other two of them is equal to the product of the remaining two numbers.

2 Let x, y, z be positive integers such that $x \neq y \neq z \neq x$. Prove that

$$
(x+y+z)(x y+y z+z x-2) \geq 9 x y z .
$$

When does the equality hold?
Proposed by Dorlir Ahmeti, Albania
3 Let $A B C$ be an acute triangle such that $A B \neq A C$, with circumcircle Γ and circumcenter O. Let M be the midpoint of $B C$ and D be a point on Γ such that $A D \perp B C$. let T be a point such that $B D C T$ is a parallelogram and Q a point on the same side of $B C$ as A such that $\angle B Q M=\angle B C A$ and $\angle C Q M=\angle C B A$. Let the line $A O$ intersect Γ at $E(E \neq A)$ and let the circumcircle of $\triangle E T Q$ intersect Γ at point $X \neq E$. Prove that the point A, M and X are collinear.

4 Consider a regular 2 n -gon $P, A_{1}, A_{2}, \cdots, A_{2 n}$ in the plane where n is a positive integer. We say that a point S on one of the sides of P can be seen from a point E that is external to P, if the line segment $S E$ contains no other points that lie on the sides of P except S. We color the sides of P in 3 different colors (ignore the vertices of P, we consider them colorless), such that every side is colored in exactly one color, and each color is used at least once. Moreover, from every point in the plane external to P, points of most 2 different colors on P can be seen. Find the number of distinct such colorings of P (two colorings are considered distinct if at least one of sides is colored differently).

Proposed by Viktor Simjanoski, Macedonia
JBMO 2017, Q4

