Art of Problem Solving

AoPS Community

Vietnam National Olympiad 1999

www.artofproblemsolving.com/community/c4728
by mr.danh, Peter, James Potter, galois, orl

Day 1

1 Solve the system of equations: $\left(1+4^{2 x-y}\right) \cdot 5^{1-2 x+y}=1+2^{2 x-y+1} y^{3}+4 x+\ln \left(y^{2}+2 x\right)+1=0$
2 let a triangle $A B C$ and $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of the arcs $B C, C A, A B$ respectively of its circumcircle. $\mathrm{A}^{\prime} \mathrm{B}^{\prime}, \mathrm{A}^{\prime} \mathrm{C}^{\prime}$ meets BC at A_{1}, A_{2} respectively. Pairs of point $\left(B_{1}, B_{2}\right),\left(C_{1}, C_{2}\right)$ are similarly defined. Prove that $A_{1} A_{2}=B_{1} B_{2}=C_{1} C_{2}$ if and only if triangle ABC is equilateral.

3 Let $\left\{x_{n}\right\}_{n \geq 0}$ and $\left\{y_{n}\right\}_{n \geq 0}$ be two sequences defined recursively as follows

$$
\begin{aligned}
& x_{0}=1, x_{1}=4, x_{n+2}=3 x_{n+1}-x_{n}, \\
& y_{0}=1, y_{1}=2, y_{n+2}=3 y_{n+1}-y_{n} .
\end{aligned}
$$

- Prove that $x_{n}{ }^{2}-5 y_{n}{ }^{2}+4=0$ for all non-negative integers. - Suppose that a, b are two positive integers such that $a^{2}-5 b^{2}+4=0$. Prove that there exists a non-negative integer k such that $a=x_{k}$ and $b=y_{k}$.

Day 2

1 Given are three positive real numbers a, b, c satisfying $a b c+a+c=b$. Find the max value of the expression:

$$
P=\frac{2}{a^{2}+1}-\frac{2}{b^{2}+1}+\frac{3}{c^{2}+1} .
$$

$2 O A, O B, O C, O D$ are 4 rays in space such that the angle between any two is the same. Show that for a variable ray $O X$, the sum of the cosines of the angles $X O A, X O B, X O C, X O D$ is constant and the sum of the squares of the cosines is also constant.

3 Let $S=\{0,1,2, \ldots, 1999\}$ and $T=\{0,1,2, \ldots\}$. Find all functions $f: T \mapsto S$ such that
(i) $f(s)=s \quad \forall s \in S$.
(ii) $f(m+n)=f(f(m)+f(n)) \quad \forall m, n \in T$.

