Art of Problem Solving

AoPS Community

Vietnam National Olympiad 2000

www.artofproblemsolving.com/community/c4729
by April

Day 1

1 Given a real number $c>0$, a sequence $\left(x_{n}\right)$ of real numbers is defined by $x_{n+1}=\sqrt{c-\sqrt{c+x_{n}}}$ for $n \geq 0$. Find all values of c such that for each initial value x_{0} in $(0, c)$, the sequence $\left(x_{n}\right)$ is defined for all n and has a finite limit $\lim x_{n}$ when $n \rightarrow+\infty$.

2 Two circles $\left(O_{1}\right)$ and $\left(O_{2}\right)$ with respective centers O_{1}, O_{2} are given on a plane. Let M_{1}, M_{2} be points on $\left(O_{1}\right),\left(O_{2}\right)$ respectively, and let the lines $O_{1} M_{1}$ and $O_{2} M_{2}$ meet at Q. Starting simultaneously from these positions, the points M_{1} and M_{2} move clockwise on their own circles with the same angular velocity.
(a) Determine the locus of the midpoint of $M_{1} M_{2}$.
(b) Prove that the circumcircle of $\triangle M_{1} Q M_{2}$ passes through a fixed point.

3 Consider the polynomial $P(x)=x^{3}+153 x^{2}-111 x+38$.
(a) Prove that there are at least nine integers a in the interval $\left[1,3^{2000}\right]$ for which $P(a)$ is divisible by 3^{2000}.
(b) Find the number of integers a in $\left[1,3^{2000}\right]$ with the property from (a).

Day 2

1 For every integer $n \geq 3$ and any given angle α with $0<\alpha<\pi$, let $P_{n}(x)=x^{n} \sin \alpha-x \sin n \alpha+$ $\sin (n-1) \alpha$.
(a) Prove that there is a unique polynomial of the form $f(x)=x^{2}+a x+b$ which divides $P_{n}(x)$ for every $n \geq 3$.
(b) Prove that there is no polynomial $g(x)=x+c$ which divides $P_{n}(x)$ for every $n \geq 3$.

2 Find all integers $n \geq 3$ such that there are n points in space, with no three on a line and no four on a circle, such that all the circles pass through three points between them are congruent.

3 Let $P(x)$ be a nonzero polynomial such that, for all real numbers $x, P\left(x^{2}-1\right)=P(x) P(-x)$. Determine the maximum possible number of real roots of $P(x)$.

