

AoPS Community

Vietnam National Olympiad 2001

www.artofproblemsolving.com/community/c4730 by N.T.TUAN

Day 1

1	A circle center O meets a circle center O' at A and B . The line TT' touches the first circle at T and the second at T' . The perpendiculars from T and T' meet the line OO' at S and S' . The ray AS meets the first circle again at R , and the ray AS' meets the second circle again at R' . Show that R, B and R' are collinear.
2	Let $N = 6^n$, where <i>n</i> is a positive integer, and let $M = a^N + b^N$, where <i>a</i> and <i>b</i> are relatively prime integers greater than $1.M$ has at least two odd divisors greater than 1 are <i>p</i> , <i>q</i> . Find the residue of $p^N + q^N \mod 6 \cdot 12^n$.
3	For real a, b define the sequence $x_0, x_1, x_2,$ by $x_0 = a, x_{n+1} = x_n + b \sin x_n$. If $b = 1$, show that the sequence converges to a finite limit for all a . If $b > 2$, show that the sequence diverges for some a .
Day 2	
1	Find the maximum value of $\frac{1}{x^2} + \frac{2}{y^2} + \frac{3}{z^2}$, where x, y, z are positive reals satisfying $\frac{1}{\sqrt{2}} \le z < \frac{\min(x\sqrt{2},y\sqrt{3})}{2}, x + z\sqrt{3} \ge \sqrt{6}, y\sqrt{3} + z\sqrt{10} \ge 2\sqrt{5}.$
2	Find all real-valued continuous functions defined on the interval $(-1, 1)$ such that $(1-x^2)f(\frac{2x}{1+x^2}) = (1+x^2)^2 f(x)$ for all x .
3	$(a_1, a_2,, a_{2n})$ is a permutation of $\{1, 2,, 2n\}$ such that $ a_i - a_{i+1} \neq a_j - a_{j+1} $ for $i \neq j$.

Show that $a_1 = a_{2n} + n$ iff $1 \le a_{2i} \le n$ for i = 1, 2, ..., n.

Act of Problem Solving is an ACS WASC Accredited School.