

## **AoPS Community**

## Vietnam National Olympiad 2002

www.artofproblemsolving.com/community/c4731 by April, heartwork

| Day 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Solve the equation $\sqrt{4 - 3\sqrt{10 - 3x}} = x - 2$ .                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2     | An isosceles triangle $ABC$ with $AB = AC$ is given on the plane. A variable circle $(O)$ with center $O$ on the line $BC$ passes through $A$ and does not touch either of the lines $AB$ and $AC$ .<br>Let $M$ and $N$ be the second points of intersection of $(O)$ with lines $AB$ and $AC$ , respectively.<br>Find the locus of the orthocenter of triangle $AMN$ .                                                                                               |
| 3     | Let be given two positive integers $m$ , $n$ with $m < 2001$ , $n < 2002$ . Let distinct real numbers be written in the cells of a $2001 \times 2002$ board (with $2001$ rows and $2002$ columns). A cell of the board is called <i>bad</i> if the corresponding number is smaller than at least $m$ numbers in the same column and at least $n$ numbers in the same row. Let $s$ denote the total number of <i>bad</i> cells. Find the least possible value of $s$ . |
| Day 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1     | Let <i>a</i> , <i>b</i> , <i>c</i> be real numbers for which the polynomial $x^3 + ax^2 + bx + c$ has three real roots. Prove that                                                                                                                                                                                                                                                                                                                                    |
|       | $12ab + 27c \le 6a^3 + 10\left(a^2 - 2b\right)^{\frac{3}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | When does equality occur?                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2     | Determine for which n positive integer the equation: $a+b+c+d = n\sqrt{abcd}$ has positive integer solutions.                                                                                                                                                                                                                                                                                                                                                         |
| 3     | For a positive integer <i>n</i> , consider the equation $\frac{1}{x-1} + \frac{1}{4x-1} + \dots + \frac{1}{k^2x-1} + \dots + \frac{1}{n^2x-1} = \frac{1}{2}$ .<br>(a) Prove that, for every <i>n</i> , this equation has a unique root greater than 1, which is denoted by                                                                                                                                                                                            |
|       | $x_n$ .<br>(b) Prove that the limit of sequence $(x_n)$ is 4 as $n$ approaches infinity.                                                                                                                                                                                                                                                                                                                                                                              |

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱