Art of Problem Solving

AoPS Community

Vietnam National Olympiad 2002

www.artofproblemsolving.com/community/c4731
by April, heartwork

Day 1

1 Solve the equation $\sqrt{4-3 \sqrt{10-3 x}}=x-2$.
2 An isosceles triangle $A B C$ with $A B=A C$ is given on the plane. A variable circle (O) with center O on the line $B C$ passes through A and does not touch either of the lines $A B$ and $A C$. Let M and N be the second points of intersection of (O) with lines $A B$ and $A C$, respectively. Find the locus of the orthocenter of triangle $A M N$.

3 Let be given two positive integers m, n with $m<2001, n<2002$. Let distinct real numbers be written in the cells of a 2001×2002 board (with 2001 rows and 2002 columns). A cell of the board is called bad if the corresponding number is smaller than at least m numbers in the same column and at least n numbers in the same row. Let s denote the total number of bad cells. Find the least possible value of s.

Day 2

1 Let a, b, c be real numbers for which the polynomial $x^{3}+a x^{2}+b x+c$ has three real roots. Prove that

$$
12 a b+27 c \leq 6 a^{3}+10\left(a^{2}-2 b\right)^{\frac{3}{2}}
$$

When does equality occur?
2 Determine for which n positive integer the equation: $a+b+c+d=n \sqrt{a b c d}$ has positive integer solutions.

3 For a positive integer n, consider the equation $\frac{1}{x-1}+\frac{1}{4 x-1}+\cdots+\frac{1}{k^{2} x-1}+\cdots+\frac{1}{n^{2} x-1}=\frac{1}{2}$.
(a) Prove that, for every n, this equation has a unique root greater than 1 , which is denoted by x_{n}.
(b) Prove that the limit of sequence $\left(x_{n}\right)$ is 4 as n approaches infinity.

