Art of Problem Solving

AoPS Community

Vietnam National Olympiad 2003

www.artofproblemsolving.com/community/c4732
by N.T.TUAN, uTOPi_a

Day 1

1 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $f(\cot x)=\cos 2 x+\sin 2 x$ for all $0<x<\pi$. Define $g(x)=f(x) f(1-x)$ for $-1 \leq x \leq 1$. Find the maximum and minimum values of g on the closed interval $[-1,1]$.

2 The circles C_{1} and C_{2} touch externally at M and the radius of C_{2} is larger than that of $C_{1} . A$ is any point on C_{2} which does not lie on the line joining the centers of the circles. B and C are points on C_{1} such that $A B$ and $A C$ are tangent to C_{1}. The lines $B M, C M$ intersect C_{2} again at E, F respectively. D is the intersection of the tangent at A and the line $E F$. Show that the locus of D as A varies is a straight line.

3 Let S_{n} be the number of permutations $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $(1,2, \ldots, n)$ such that $1 \leq\left|a_{k}-k\right| \leq 2$ for all k. Show that $\frac{7}{4} S_{n-1}<S_{n}<2 S_{n-1}$ for $n>6$.

Day 2

1 Find the largest positive integer n such that the following equations have integer solutions in $x, y_{1}, y_{2}, \ldots, y_{n}:(x+1)^{2}+y_{1}^{2}=(x+2)^{2}+y_{2}^{2}=\ldots=(x+n)^{2}+y_{n}^{2}$.

2 Define $p(x)=4 x^{3}-2 x^{2}-15 x+9, q(x)=12 x^{3}+6 x^{2}-7 x+1$. Show that each polynomial has just three distinct real roots. Let A be the largest root of $p(x)$ and B the largest root of $q(x)$. Show that $A^{2}+3 B^{2}=4$.
$3 \quad$ Let \mathcal{F} be the set of all functions $f:(0, \infty) \rightarrow(0, \infty)$ such that $f(3 x) \geq f(f(2 x))+x$ for all x. Find the largest A such that $f(x) \geq A x$ for all $f \in \mathcal{F}$ and all x.

