AoPS Community

Vietnam National Olympiad 2004
www.artofproblemsolving.com/community/c4733
by April, Peter, silouan

Day 1

1 Solve the system of equations $\left\{\begin{array}{l}x^{3}+x(y-z)^{2}=2 \\ y^{3}+y(z-x)^{2}=30 \\ z^{3}+z(x-y)^{2}=16\end{array}\right.$.
2 In a triangle $A B C$, the bisector of $\angle A C B$ cuts the side $A B$ at D. An arbitrary circle (O) passing through C and D meets the lines $B C$ and $A C$ at M and N (different from C), respectively.
(a) Prove that there is a circle (S) touching $D M$ at M and $D N$ at N.
(b) If circle (S) intersects the lines $B C$ and $C A$ again at P and Q respectively, prove that the lengths of the segments $M P$ and $N Q$ are constant as (O) varies.

3 Let A be the set of the 16 first positive integers. Find the least positive integer k satisfying the condition: In every k-subset of A, there exist two distinct $a, b \in A$ such that $a^{2}+b^{2}$ is prime.

Day 2

1 The sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is defined by $x_{1}=1$ and $x_{n+1}=\frac{(2+\cos 2 \alpha) x_{n}-\cos ^{2} \alpha}{(2-2 \cos 2 \alpha) x_{n}+2-\cos 2 \alpha}$, for all $n \in \mathbb{N}$, where α is a given real parameter. Find all values of α for which the sequence $\left(y_{n}\right)$ given by $y_{n}=\sum_{k=1}^{n} \frac{1}{2 x_{k}+1}$ has a finite limit when $n \rightarrow+\infty$ and find that limit.

2 Let x, y, z be positive reals satisfying $(x+y+z)^{3}=32 x y z$
Find the minimum and the maximum of $P=\frac{x^{4}+y^{4}+z^{4}}{(x+y+z)^{4}}$
3 Let $S(n)$ be the sum of decimal digits of a natural number n. Find the least value of $S(m)$ if m is an integral multiple of 2003.

