Art of Problem Solving

AoPS Community

Vietnam National Olympiad 2005
www.artofproblemsolving.com/community/c4734
by pigfly

Day 1

1 Let x, y be real numbers satisfying the condition:

$$
x-3 \sqrt{x+1}=3 \sqrt{y+2}-y
$$

Find the greatest value and the smallest value of:

$$
P=x+y
$$

2 Let (O) be a fixed circle with the radius R. Let A and B be fixed points in (O) such that A, B, O are not collinear. Consider a variable point C lying on $(O)(C \neq A, B)$. Construct two circles $\left(O_{1}\right),\left(O_{2}\right)$ passing through A, B and tangent to $B C, A C$ at C, respectively. The circle $\left(O_{1}\right)$ intersects the circle $\left(O_{2}\right)$ in $D(D \neq C)$. Prove that:
a)

$$
C D \leq R
$$

b) The line $C D$ passes through a point independent of C (i.e. there exists a fixed point on the line $C D$ when C lies on (O)).

3 Let $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7} A_{8}$ be convex 8-gon (no three diagonals concruent).
The intersection of arbitrary two diagonals will be called "button". Consider the convex quadrilaterals formed by four vertices of $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7} A_{8}$ and such convex quadrilaterals will be called "sub quadrilaterals". Find the smallest n satisfying:
We can color n "button" such that for all $i, k \in\{1,2,3,4,5,6,7,8\}, i \neq k, s(i, k)$ are the same where $s(i, k)$ denote the number of the "sub quadrilaterals" has A_{i}, A_{k} be the vertices and the intersection of two its diagonals is "button".

Day 2

1 Find all function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the condition:

$$
f(f(x-y))=f(x) \cdot f(y)-f(x)+f(y)-x y
$$

2 Find all triples of natural (x, y, n) satisfying the condition:

$$
\frac{x!+y!}{n!}=3^{n}
$$

Define $0!=1$
3 Let $\left\{x_{n}\right\}$ be a real sequence defined by:

$$
x_{1}=a, x_{n+1}=3 x_{n}^{3}-7 x_{n}^{2}+5 x_{n}
$$

For all $n=1,2,3 \ldots$ and a is a real number.
Find all a such that $\left\{x_{n}\right\}$ has finite limit when $n \rightarrow+\infty$ and find the finite limit in that cases.

