AoPS Community

Vietnam National Olympiad 2006

www.artofproblemsolving.com/community/c4735
by linkgreencold

Day 1

1 Solve the following system of equations in real numbers:

$$
\left\{\begin{array}{l}
\sqrt{x^{2}-2 x+6} \cdot \log _{3}(6-y)=x \\
\sqrt{y^{2}-2 y+6} \cdot \log _{3}(6-z)=y \\
\sqrt{z^{2}-2 z+6} \cdot \log _{3}(6-x)=z
\end{array} .\right.
$$

2 Let $A B C D$ be a convex quadrilateral. Take an arbitrary point M on the line $A B$, and let N be the point of intersection of the circumcircles of triangles $M A C$ and $M B C$ (different from M). Prove that:
a) The point N lies on a fixed circle;
b) The line $M N$ passes though a fixed point.

3 Let m, n be two positive integers greater than 3 . Consider the table of size $m \times n$ (m rows and n columns) formed with unit squares. We are putting marbles into unit squares of the table following the instructions:

- each time put 4 marbles into 4 unit squares (1 marble per square) such that the 4 unit squares formes one of the followings 4 pictures (click here (http://www.mathlinks.ro/Forum/ download.php?id=4425) to view the pictures).

In each of the following cases, answer with justification to the following question: Is it possible that after a finite number of steps we can set the marbles into all of the unit squares such that the numbers of marbles in each unit square is the same?
a) $m=2004, n=2006$;
b) $m=2005, n=2006$.

Day 2

4 Given is the function $f(x)=-x+\sqrt{(x+a)(x+b)}$, where a, b are distinct given positive real numbers. Prove that for all real numbers $s \in(0,1)$ there exist only one positive real number α
such that

$$
f(\alpha)=\sqrt[s]{\frac{a^{s}+b^{s}}{2}}
$$

$5 \quad$ Find all polynomyals $P(x)$ with real coefficients which satisfy the following equality for all real numbers x :

$$
P\left(x^{2}\right)+x(3 P(x)+P(-x))=(P(x))^{2}+2 x^{2} .
$$

$6 \quad$ Let S be a set of 2006 numbers. We call a subset T of S naughty if for any two arbitrary numbers u, v (not neccesary distinct) in $T, u+v$ is not in T. Prove that

1) If $S=\{1,2, \ldots, 2006\}$ every naughty subset of S has at most 1003 elements;
2) If S is a set of 2006 arbitrary positive integers, there exists a naughty subset of S which has 669 elements.
