Art of Problem Solving

AoPS Community

Vietnam National Olympiad 2007
www.artofproblemsolving.com/community/c4736
by hien

Day 1
1 Solve the system of equations: $\left\{\begin{array}{l}\left(1+\frac{12}{3 x+y}\right) \cdot \sqrt{x}=2 \\ \left(1-\frac{12}{3 x+y}\right) \cdot \sqrt{y}=6\end{array}\right.$
2 Let x, y be integer number with $x, y \neq-1$ so that $\frac{x^{4}-1}{y+1}+\frac{y^{4}-1}{x+1} \in \mathbb{Z}$. Prove that $x^{4} y^{44}-1$ is divisble by $x+1$

3 Let B, C be fixed points and A be roving point. Let H, G be orthecentre and centroid of triagle $A B C$. Known midpoint of HG lies on $B C$, find locus of A

Day 2

1 Given a regular 2007-gon. Find the minimal number k such that: Among every k vertexes of the polygon, there always exists 4 vertexes forming a convex quadrilateral such that 3 sides of the quadrilateral are also sides of the polygon.

2 Given a number $b>0$, find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that: $f(x+y)=f(x) .3^{b^{y}+f(y)-1}+$ $b^{x} .\left(3^{b^{y}+f(y)-1}-b^{y}\right) \forall x, y \in \mathbb{R}$

3 Let $A B C D$ be trapezium that is inscribed in circle (0) with larger edge $B C$. P is a point lying outer segment $B C$. PA cut (0) at $N($ that means PA isn't tangent of (0)), the circle with diameter PD intersect (0) at $E, D E$ meet $B C$ at N. Prove that MN always pass through a fixed point.

