Art of Problem Solving

AoPS Community

Vietnam National Olympiad 2009
www.artofproblemsolving.com/community/c4738
by marsupilami, April, kihe_freety5

1 Problem 1.Find all (x, y) such that:

$$
\left\{\begin{array}{c}
\frac{1}{\sqrt{1+2 x^{2}}}+\frac{1}{\sqrt{1+2 y^{2}}}
\end{array}=\frac{2}{\sqrt{1+2 x y}}\right.
$$

2 The sequence $\left\{x_{n}\right\}$ is defined by

$$
\left\{\begin{array}{l}
x_{1}=\frac{1}{2} \\
x_{n}=\frac{\sqrt{x_{n-1}^{2}+4 x_{n-1}}+x_{n-1}}{2}
\end{array}\right.
$$

Prove that the sequence $\left\{y_{n}\right\}$, where $y_{n}=\sum_{i=1}^{n} \frac{1}{x_{i}{ }^{2}}$, has a finite limit and find that limit.
3 Let A, B be two fixed points and C is a variable point on the plane such that $\angle A C B=\alpha$ (constant) $\left(0^{\circ} \leq \alpha \leq 180^{\circ}\right)$. Let D, E, F be the projections of the incenter I of triangle $A B C$ to its sides $B C, C A, A B$, respectively. Denoted by M, N the intersections of $A I, B I$ with $E F$, respectively. Prove that the length of the segment $M N$ is constant and the circumcircle of triangle $D M N$ always passes through a fixed point.

4 Let a, b, c be three real numbers. For each positive integer number $n, a^{n}+b^{n}+c^{n}$ is an integer number. Prove that there exist three integers p, q, r such that a, b, c are the roots of the equation $x^{3}+p x^{2}+q x+r=0$.

5 Let $S=\{1,2,3, \ldots, 2 n\}\left(n \in \mathbb{Z}^{+}\right)$. Ddetermine the number of subsets T of S such that there are no 2 element in $T a, b$ such that $|a-b|=\{1, n\}$

