AoPS Community

Vietnam National Olympiad 2010
www.artofproblemsolving.com/community/c4739
by Love_Math1994

1 Solve the system equations

$$
\left\{\begin{array}{c}
x^{4}-y^{4}=240 \\
x^{3}-2 y^{3}=3\left(x^{2}-4 y^{2}\right)-4(x-8 y)
\end{array}\right.
$$

2 Let $\left\{a_{n}\right\}$ be a sequence which satisfy
$a_{1}=5$ and $a_{n=} \sqrt[n]{a_{n-1}^{n-1}+2^{n-1}+2.3^{n-1}} \quad \forall n \geq 2$
(a) Find the general fomular for a_{n}
(b) Prove that $\left\{a_{n}\right\}$ is decreasing sequences

3 In plane,let a circle (O) and two fixed points B, C lies in (O)
such that $B C$ not is the diameter.Consider a point A varies in (O) such that $A \neq B, C$ and $A B \neq A C$. Call D and E
respective is intersect of $B C$ and internal and external bisector
of $\widehat{B A C}, I$ is midpoint of $D E$. The line that pass through
orthocenter of $\triangle A B C$
and perpendicular with $A I$ intersects $A D, A E$ respective at M, N.
1/Prove that $M N$ pass through a fixed point
2/Determint the place of A such that $S_{A M N}$ has maxium value
4 Prove that for each positive integer n, the equation
$x^{2}+15 y^{2}=4^{n}$
has at least n integer solution (x, y)
5 Let a positive integer n.Consider square table $3 * 3$. One use n
colors to color all cell of table such that
each cell is colored by exactly one color.
Two colored table is same if we can receive them from other by a rotation through center of $3 * 3$ table
How many way to color this square table satifies above conditions.

