AoPS Community

Vietnam National Olympiad 2011

www.artofproblemsolving.com/community/c4740
by Potla

Day 1

1 Prove that if $x>0$ and $n \in \mathbb{N}$, then we have

$$
\frac{x^{n}\left(x^{n+1}+1\right)}{x^{n}+1} \leq\left(\frac{x+1}{2}\right)^{2 n+1}
$$

2 Let $\left\langle x_{n}\right\rangle$ be a sequence of real numbers defined as

$$
x_{1}=1 ; x_{n}=\frac{2 n}{(n-1)^{2}} \sum_{i=1}^{n-1} x_{i}
$$

Show that the sequence $y_{n}=x_{n+1}-x_{n}$ has finite limits as $n \rightarrow \infty$.
$3 \quad$ Let $A B$ be a diameter of a circle (O) and let P be any point on the tangent drawn at B to (O). Define $A P \cap(O)=C \neq A$, and let D be the point diametrically opposite to C. If $D P$ meets (O) second time in E, then,
(i) Prove that $A E, B C, P O$ concur at M.
(ii) If R is the radius of (O), find P such that the area of $\triangle A M B$ is maximum, and calculate the area in terms of R.

4 A convex pentagon $A B C D E$ satisfies that the sidelengths and $A C, A D \leq \sqrt{3}$. Let us choose 2011 distinct points inside this pentagon. Prove that there exists an unit circle with centre on one edge of the pentagon, and which contains at least 403 points out of the 2011 given points. Edited
I posted it correctly before but because of a little confusion deleted the sidelength part, sorry.

Day 2

1 Define the sequence of integers $\left\langle a_{n}\right\rangle$ as;

$$
a_{0}=1, \quad a_{1}=-1, \quad \text { and } \quad a_{n}=6 a_{n-1}+5 a_{n-2} \quad \forall n \geq 2 .
$$

Prove that $a_{2012}-2010$ is divisible by 2011 .

2 Let $\triangle A B C$ be a triangle such that $\angle C$ and $\angle B$ are acute. Let D be a variable point on $B C$ such that $D \neq B, C$ and $A D$ is not perpendicular to $B C$. Let d be the line passing through D and perpendicular to $B C$. Assume $d \cap A B=E, d \cap A C=F$. If M, N, P are the incentres of $\triangle A E F, \triangle B D E, \triangle C D F$. Prove that A, M, N, P are concyclic if and only if d passes through the incentre of $\triangle A B C$.
$3 \quad$ Let $n \in \mathbb{N}$ and define $P(x, y)=x^{n}+x y+y^{n}$.
Show that we cannot obtain two non-constant polynomials $G(x, y)$ and $H(x, y)$ with real coefficients such that $P(x, y)=G(x, y) \cdot H(x, y)$.

