

AoPS Community

Vietnam National Olympiad 2012

www.artofproblemsolving.com/community/c4741 by Potla, trenkialabautroj

Day 1 January 11th

- Define a sequence {x_n} as: {x₁ = 3 x_n = ⁿ⁺²/_{3n}(x_{n-1}+2) for n ≥ 2. Prove that this sequence has a finite limit as n → +∞. Also determine the limit.
 Let ⟨a_n⟩ and ⟨b_n⟩ be two arithmetic sequences of numbers, and let m be an integer greater than 2. Define P_k(x) = x² + a_kx + b_k, k = 1, 2, ..., m. Prove that if the quadratic expressions P₁(x), P_m(x) do not have any real roots, then all the remaining polynomials also don't have real roots.
 Let ABCD be a cyclic quadrilateral with circumcentre O, and the pair of opposite sides not parallel with each other. Let M = AB ∩ CD and N = AD ∩ BC. Denote, by P, Q, S, T; the intersection of the internal angle bisectors of ∠MAN and ∠MBN; ∠MBN and ∠MCN; ∠MDN and ∠MAN; ∠MCN and ∠MDN. Suppose that the four points P, Q, S, T are distinct.
 (a) Show that the four points P, Q, S, T are concyclic. Find the centre of this circle, and denote it as I.
 (b) Let E = AC ∩ BD. Prove that E, O, I are collinear.
 - 4 Let *n* be a natural number. There are *n* boys and *n* girls standing in a line, in any arbitrary order. A student *X* will be eligible for receiving *m* candies, if we can choose two students of opposite sex with *X* standing on either side of *X* in *m* ways. Show that the total number of candies does not exceed $\frac{1}{3}n(n^2 - 1)$.

Day 2 January 12th

- For a group of 5 girls, denoted as G₁, G₂, G₃, G₄, G₅ and 12 boys. There are 17 chairs arranged in a row. The students have been grouped to sit in the seats such that the following conditions are simultaneously met:
 (a) Each chair has a proper seat.
 (b) The order, from left to right, of the girls seating is G₁; G₂; G₃; G₄; G₅.
 (c) Between G₁ and G₂ there are at least three boys.
 (d) Between G₄ and G₅ there are at least one boy and most four boys.
 - How many such arrangements are possible?
- **2** Consider two odd natural numbers *a* and *b* where *a* is a divisor of $b^2 + 2$ and *b* is a divisor of

AoPS Community

2012 Vietnam National Olympiad

 $a^2 + 2$. Prove that a and b are the terms of the series of natural numbers $\langle v_n \rangle$ defined by

 $v_1 = v_2 = 1; v_n = 4v_{n-1} - v_{n-2}$ for $n \ge 3$.

3 Find all $f : \mathbb{R} \to \mathbb{R}$ such that: (a) For every real number *a* there exist real number *b*: f(b) = a(b) If x > y then f(x) > f(y)(c) f(f(x)) = f(x) + 12x.

AOPSOnline AOPSAcademy AOPS