Art of Problem Solving

AoPS Community

Vietnam National Olympiad 2012

www.artofproblemsolving.com/community/c4741
by Potla, trenkialabautroj

Day 1 January 11th
1 Define a sequence $\left\{x_{n}\right\}$ as: $\left\{\begin{array}{l}x_{1}=3 \\ x_{n}=\frac{n+2}{3 n}\left(x_{n-1}+2\right) \text { for } n \geq 2 .\end{array}\right.$
Prove that this sequence has a finite limit as $n \rightarrow+\infty$. Also determine the limit.
2 Let $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ be two arithmetic sequences of numbers, and let m be an integer greater than 2. Define $P_{k}(x)=x^{2}+a_{k} x+b_{k}, k=1,2, \cdots, m$. Prove that if the quadratic expressions $P_{1}(x), P_{m}(x)$ do not have any real roots, then all the remaining polynomials also don't have real roots.

3 Let $A B C D$ be a cyclic quadrilateral with circumcentre O, and the pair of opposite sides not parallel with each other. Let $M=A B \cap C D$ and $N=A D \cap B C$. Denote, by P, Q, S, T; the intersection of the internal angle bisectors of $\angle M A N$ and $\angle M B N ; \angle M B N$ and $\angle M C N ; \angle M D N$ and $\angle M A N ; \angle M C N$ and $\angle M D N$. Suppose that the four points P, Q, S, T are distinct.
(a) Show that the four points P, Q, S, T are concyclic. Find the centre of this circle, and denote it as I.
(b) Let $E=A C \cap B D$. Prove that E, O, I are collinear.

4 Let n be a natural number. There are n boys and n girls standing in a line, in any arbitrary order. A student X will be eligible for receiving m candies, if we can choose two students of opposite sex with X standing on either side of X in m ways. Show that the total number of candies does not exceed $\frac{1}{3} n\left(n^{2}-1\right)$.

Day 2 January 12th

1 For a group of 5 girls, denoted as $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}$ and 12 boys. There are 17 chairs arranged in a row. The students have been grouped to sit in the seats such that the following conditions are simultaneously met:
(a) Each chair has a proper seat.
(b) The order, from left to right, of the girls seating is $G_{1} ; G_{2} ; G_{3} ; G_{4} ; G_{5}$.
(c) Between G_{1} and G_{2} there are at least three boys.
(d) Between G_{4} and G_{5} there are at least one boy and most four boys.

How many such arrangements are possible?
2 Consider two odd natural numbers a and b where a is a divisor of $b^{2}+2$ and b is a divisor of
$a^{2}+2$. Prove that a and b are the terms of the series of natural numbers $\left\langle v_{n}\right\rangle$ defined by

$$
v_{1}=v_{2}=1 ; v_{n}=4 v_{n-1}-v_{n-2} \text { for } n \geq 3 .
$$

$3 \quad$ Find all $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:
(a) For every real number a there exist real number $b: f(b)=a$
(b) If $x>y$ then $f(x)>f(y)$
(c) $f(f(x))=f(x)+12 x$.

