AoPS Community

Vietnam National Olympiad 2013

www.artofproblemsolving.com/community/c4742
by caoquyetthang, mathlink, Nguyenhuyhoang

Day 1

1 Solve with full solution:

$$
\left\{\begin{array}{l}
\sqrt{(\sin x)^{2}+\frac{1}{(\sin x)^{2}}}+\sqrt{(\cos y)^{2}+\frac{1}{(\cos y)^{2}}}=\sqrt{\frac{20 y}{x+y}} \\
\sqrt{(\sin y)^{2}+\frac{1}{(\sin y)^{2}}}+\sqrt{(\cos x)^{2}+\frac{1}{(\cos x)^{2}}}=\sqrt{\frac{20 x}{x+y}}
\end{array}\right.
$$

2 Define a sequence $\left\{a_{n}\right\}$ as: $\left\{\begin{array}{l}a_{1}=1 \\ a_{n+1}=3-\frac{a_{n}+2}{2^{a_{n}}} \text { for } n \geq 1 .\end{array}\right.$
Prove that this sequence has a finite limit as $n \rightarrow+\infty$. Also determine the limit.
3 Let $A B C$ be a triangle such that $A B C$ isn't a isosceles triangle. (I) is incircle of triangle touches $B C, C A, A B$ at D, E, F respectively. The line through E perpendicular to $B I$ cuts (I) again at K. The line through F perpendicular to $C I$ cuts (I) again at $L . J$ is midpoint of $K L$.
a) Prove that D, I, J collinear.
b) B, C are fixed points, A is moved point such that $\frac{A B}{A C}=k$ with k is constant. $I E, I F$ cut (I) again at M, N respectively. $M N$ cuts $I B, I C$ at P, Q respectively. Prove that bisector perpendicular of $P Q$ through a fixed point.

4 Write down some numbers $a_{1}, a_{2}, \ldots, a_{n}$ from left to right on a line. Step 1, we write $a_{1}+a_{2}$ between $a_{1}, a_{2} ; a_{2}+a_{3}$ between $a_{2}, a_{3}, a_{n-1}+a_{n}$ between a_{n-1}, a_{n}, and then we have new sequence $b=\left(a_{1}, a_{1}+a_{2}, a_{2}, a_{2}+a_{3}, a_{3}, \ldots, a_{n-1}, a_{n-1}+a_{n}, a_{n}\right)$. Step 2 , we do the same thing with sequence b to have the new sequence c again. And so on. If we do 2013 steps, count the number of the number 2013 appear on the line if
a) $n=2, a_{1}=1, a_{2}=1000$
b) $n=1000, a_{i}=i, i=1,2 \ldots, 1000$

Sorry for my bad English
Moderator says: alternate phrasing here: https://www.artofproblemsolving.com/Forum/viewtopic.php?f=

Day 2

$1 \quad$ Find all $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies $f(0)=0, f(1)=2013$ and

$$
(x-y)\left(f\left(f^{2}(x)\right)-f\left(f^{2}(y)\right)\right)=(f(x)-f(y))\left(f^{2}(x)-f^{2}(y)\right)
$$

Note: $f^{2}(x)=(f(x))^{2}$
2 Let $A B C$ be a cute triangle. (O) is circumcircle of $\triangle A B C . D$ is on arc $B C$ not containing A.Line \triangle moved through $H(H$ is orthocenter of $\triangle A B C$ cuts circumcircle of $\triangle A B H$,circumcircle $\triangle A C H$ again at M, N respectively.
a.Find \triangle satisfy $S_{A M N}$ max
b. d_{1}, d_{2} are the line through M perpendicular to $D B$, the line through N perpendicular to $D C$ respectively. d_{1} cuts d_{2} at P. Prove that P move on a fixed circle.

3 Find all ordered 6-tuples satisfy following system of modular equation: $a b+a^{\prime} b^{\prime} \equiv 1(\bmod 15)$ $b c+b^{\prime} c^{\prime} \equiv 1(\bmod 15) c a+c^{\prime} a^{\prime} \equiv 1(\bmod 15)$
Given that $a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \epsilon(0 ; 1 ; 2 ; \ldots ; 14)$

