

AoPS Community

Vietnam National Olympiad 2013

www.artofproblemsolving.com/community/c4742 by caoquyetthang, mathlink, Nguyenhuyhoang

Day 1

1 Solve with full solution:

$$\begin{cases} \sqrt{(\sin x)^2 + \frac{1}{(\sin x)^2}} + \sqrt{(\cos y)^2 + \frac{1}{(\cos y)^2}} = \sqrt{\frac{20y}{x+y}}\\ \sqrt{(\sin y)^2 + \frac{1}{(\sin y)^2}} + \sqrt{(\cos x)^2 + \frac{1}{(\cos x)^2}} = \sqrt{\frac{20x}{x+y}} \end{cases}$$

2 Define a sequence
$$\{a_n\}$$
 as:
$$\begin{cases} a_1 = 1\\ a_{n+1} = 3 - \frac{a_n + 2}{2^{a_n}} \text{ for } n \ge 1. \end{cases}$$

Prove that this sequence has a finite limit as $n \to +\infty$. Also determine the limit.

- 3 Let ABC be a triangle such that ABC isn't a isosceles triangle. (I) is incircle of triangle touches BC, CA, AB at D, E, F respectively. The line through E perpendicular to BI cuts (I) again at K. The line through F perpendicular to CI cuts (I) again at L.J is midpoint of KL.
 a) Prove that D, I, J collinear.
 b) B, C are fixed points, A is moved point such that ABC = k with k is constant. IE, IF cut (I) again at M, N respectively. MN cuts IB, IC at P, Q respectively. Prove that bisector perpendicular of PQ through a fixed point.
- 4 Write down some numbers $a_1, a_2, ..., a_n$ from left to right on a line. Step 1, we write $a_1 + a_2$ between a_1, a_2 ; $a_2 + a_3$ between a_2, a_3 , $a_{n-1} + a_n$ between a_{n-1}, a_n , and then we have new sequence $b = (a_1, a_1 + a_2, a_2, a_2 + a_3, a_3, ..., a_{n-1}, a_{n-1} + a_n, a_n)$. Step 2, we do the same thing with sequence b to have the new sequence c again. And so on. If we do 2013 steps, count the number of the number 2013 appear on the line if

a)
$$n = 2$$
, $a_1 = 1$, $a_2 = 1000$

b)
$$n = 1000$$
, $a_i = i, i = 1, 2..., 1000$

Sorry for my bad English Moderator says: alternate phrasing here: https://www.artofproblemsolving.com/Forum/viewtopic.php?f=

Day 2

1 Find all
$$f : \mathbb{R} \to \mathbb{R}$$
 that satisfies $f(0) = 0, f(1) = 2013$ and
 $(x - y)(f(f^2(x)) - f(f^2(y))) = (f(x) - f(y))(f^2(x) - f^2(y))$

AoPS Community

2013 Vietnam National Olympiad

Note: $f^2(x) = (f(x))^2$

- 2 Let ABC be a cute triangle.(O) is circumcircle of $\triangle ABC.D$ is on arc BC not containing A.Line \triangle moved through H(H is orthocenter of $\triangle ABC$ cuts circumcircle of $\triangle ABH$,circumcircle $\triangle ACH$ again at M, N respectively. a.Find \triangle satisfy S_{AMN} max b. d_1, d_2 are the line through M perpendicular to DB,the line through N perpendicular to DCrespectively. d_1 cuts d_2 at P.Prove that P move on a fixed circle.
- **3** Find all ordered 6-tuples satisfy following system of modular equation: $ab + a'b' \equiv 1 \pmod{15}$ $bc + b'c' \equiv 1 \pmod{15}$ $ca + c'a' \equiv 1 \pmod{15}$ Given that $a, b, c, a', b', c' \in (0; 1; 2; ...; 14)$

AoPS Online 🧔 AoPS Academy 🧔 AoPS & CADEMY