AoPS Community

USA TSTST 2017

www.artofproblemsolving.com/community/c474227
by CantonMathGuy, tastymath75025

Day 1 June 24th, 2017
1 Let $A B C$ be a triangle with circumcircle Γ, circumcenter O, and orthocenter H. Assume that $A B \neq A C$ and that $\angle A \neq 90^{\circ}$. Let M and N be the midpoints of sides $A B$ and $A C$, respectively, and let E and F be the feet of the altitudes from B and C in $\triangle A B C$, respectively. Let P be the intersection of line $M N$ with the tangent line to Γ at A. Let Q be the intersection point, other than A, of Γ with the circumcircle of $\triangle A E F$. Let R be the intersection of lines $A Q$ and $E F$. Prove that $P R \perp O H$.

Proposed by Ray Li
2 Ana and Banana are playing a game. First Ana picks a word, which is defined to be a nonempty sequence of capital English letters. (The word does not need to be a valid English word.) Then Banana picks a nonnegative integer k and challenges Ana to supply a word with exactly k subsequences which are equal to Ana's word. Ana wins if she is able to supply such a word, otherwise she loses.

For example, if Ana picks the word "TST", and Banana chooses $k=4$, then Ana can supply the word "TSTST" which has 4 subsequences which are equal to Ana's word.

Which words can Ana pick so that she wins no matter what value of k Banana chooses?
(The subsequences of a string of length n are the 2^{n} strings which are formed by deleting some of its characters, possibly all or none, while preserving the order of the remaining characters.) [i]Proposed by Kevin Sun

3 Consider solutions to the equation

$$
x^{2}-c x+1=\frac{f(x)}{g(x)},
$$

where f and g are polynomials with nonnegative real coefficients. For each $c>0$, determine the minimum possible degree of f, or show that no such f, g exist.

Proposed by Linus Hamilton and Calvin Deng
Day 2 June 26th, 2017
4 Find all nonnegative integer solutions to $2^{a}+3^{b}+5^{c}=n$!.

Proposed by Mark Sellke

$5 \quad$ Let $A B C$ be a triangle with incenter I. Let D be a point on side $B C$ and let ω_{B} and ω_{C} be the incircles of $\triangle A B D$ and $\triangle A C D$, respectively. Suppose that ω_{B} and ω_{C} are tangent to segment $B C$ at points E and F, respectively. Let P be the intersection of segment $A D$ with the line joining the centers of ω_{B} and ω_{C}. Let X be the intersection point of lines $B I$ and $C P$ and let Y be the intersection point of lines $C I$ and $B P$. Prove that lines $E X$ and $F Y$ meet on the incircle of $\triangle A B C$.
Proposed by Ray Li
6 A sequence of positive integers $\left(a_{n}\right)_{n \geq 1}$ is of Fibonacci type if it satisfies the recursive relation $a_{n+2}=a_{n+1}+a_{n}$ for all $n \geq 1$. Is it possible to partition the set of positive integers into an infinite number of Fibonacci type sequences?

Proposed by Ivan Borsenco

