

AoPS Community

Vietnam Team Selection Test 1985

www.artofproblemsolving.com/community/c4744 by mr.danh

Day 1

1	The sequence (x_n) of real numbers is defined by $x_1 = \frac{29}{10}$ and $x_{n+1} = \frac{x_n}{\sqrt{x_n^2 - 1}} + \sqrt{3}$ for all $n \ge 1$. Find a real number a (if exists) such that $x_{2k-1} > a > x_{2k}$.
	$\sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j$
2	Let ABC be a triangle with $AB = AC$. A ray Ax is constructed in space such that the three planar angles of the trihedral angle $ABCx$ at its vertex A are equal. If a point S moves on Ax , find the locus of the incenter of triangle SBC .
3	Does there exist a triangle <i>ABC</i> satisfying the following two conditions: (a) $\sin^2 A + \sin^2 B + \sin^2 C = \cot A + \cot B + \cot C$ (b) $S \ge a^2 - (b-c)^2$ where <i>S</i> is the area of the triangle <i>ABC</i> .
Day	2
1	A convex polygon A_1, A_2, \dots, A_n is inscribed in a circle with center O and radius R so that O lies inside the polygon. Let the inradii of the triangles $A_1A_2A_3, A_1A_3A_4, \dots, A_1A_{n-1}A_n$ be denoted by r_1, r_2, \dots, r_{n-2} . Prove that $r_1 + r_2 + \dots + r_{n-2} \leq R(n \cos \frac{\pi}{n} - n + 2)$.
2	Find all real values of a for which the equation $(a - 3x^2 + \cos \frac{9\pi x}{2})\sqrt{3 - ax} = 0$ has an odd number of solutions in the interval $[-1, 5]$
3	Suppose a function $f : \mathbb{R} \to \mathbb{R}$ satisfies $f(f(x)) = -x$ for all $x \in \mathbb{R}$. Prove that f has infinitely many points of discontinuity.

Art of Problem Solving is an ACS WASC Accredited School.