Art of Problem Solving

AoPS Community

Vietnam Team Selection Test 1985

www.artofproblemsolving.com/community/c4744
by mr.danh

Day 1

1 The sequence $\left(x_{n}\right)$ of real numbers is defined by $x_{1}=\frac{29}{10}$ and $x_{n+1}=\frac{x_{n}}{\sqrt{x_{n}^{2}-1}}+\sqrt{3}$ for all $n \geq 1$. Find a real number a (if exists) such that $x_{2 k-1}>a>x_{2 k}$.

2 Let $A B C$ be a triangle with $A B=A C$. A ray $A x$ is constructed in space such that the three planar angles of the trihedral angle $A B C x$ at its vertex A are equal. If a point S moves on $A x$, find the locus of the incenter of triangle $S B C$.

3 Does there exist a triangle $A B C$ satisfying the following two conditions:
(a) $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=\cot A+\cot B+\cot C$
(b) $S \geq a^{2}-(b-c)^{2}$ where S is the area of the triangle $A B C$.

Day 2

1 A convex polygon $A_{1}, A_{2}, \cdots, A_{n}$ is inscribed in a circle with center O and radius R so that O lies inside the polygon. Let the inradii of the triangles $A_{1} A_{2} A_{3}, A_{1} A_{3} A_{4}, \cdots, A_{1} A_{n-1} A_{n}$ be denoted by $r_{1}, r_{2}, \cdots, r_{n-2}$. Prove that $r_{1}+r_{2}+\ldots+r_{n-2} \leq R\left(n \cos \frac{\pi}{n}-n+2\right)$.

2 Find all real values of a for which the equation $\left(a-3 x^{2}+\cos \frac{9 \pi x}{2}\right) \sqrt{3-a x}=0$ has an odd number of solutions in the interval $[-1,5]$
$3 \quad$ Suppose a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f(f(x))=-x$ for all $x \in \mathbb{R}$. Prove that f has infinitely many points of discontinuity.

