AoPS Community

Vietnam Team Selection Test 1991

www.artofproblemsolving.com/community/c4746
by orl, Rafal

Day 1

1 1.) In the plane let us consider a set S consisting of $n \geq 3$ distinct points satisfying the following three conditions:
I. The distance between any two points $\in S$ is not greater than 1 .
II. For every point $A \in S$, there are exactly two neighbor points, i.e. two points $X, Y \in S$ for which $A X=A Y=1$.
III. For arbitrary two points $A, B \in S$, let $A^{\prime}, A^{\prime \prime}$ be the two neighbors of $A, B^{\prime}, B^{\prime \prime}$ the two neighbors of B, then $A^{\prime} A A^{\prime \prime}=B^{\prime} B B^{\prime \prime}$.

Is there such a set S if $n=1991$? If $n=2000$? Explain your answer.
2 For a positive integer $n>2$, let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a sequence of n positive reals which is either non-decreasing (this means, we have $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$) or non-increasing (this means, we have $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$), and which satisfies $a_{1} \neq a_{n}$. Let x and y be positive reals satisfying $\frac{x}{y} \geq \frac{a_{1}-a_{2}}{a_{1}-a_{n}}$. Show that:

$$
\frac{a_{1}}{a_{2} \cdot x+a_{3} \cdot y}+\frac{a_{2}}{a_{3} \cdot x+a_{4} \cdot y}+\ldots+\frac{a_{n-1}}{a_{n} \cdot x+a_{1} \cdot y}+\frac{a_{n}}{a_{1} \cdot x+a_{2} \cdot y} \geq \frac{n}{x+y} .
$$

3 Let $\{x\}$ be a sequence of positive reals $x_{1}, x_{2}, \ldots, x_{n}$, defined by: $x_{1}=1, x_{2}=9, x_{3}=9, x_{4}=1$. And for $n \geq 1$ we have:

$$
x_{n+4}=\sqrt[4]{x_{n} \cdot x_{n+1} \cdot x_{n+2} \cdot x_{n+3}} .
$$

Show that this sequence has a finite limit. Determine this limit.

Day 2

1 Let T be an arbitrary tetrahedron satisfying the following conditions:
I. Each its side has length not greater than 1,
II. Each of its faces is a right triangle.

Let $s(T)=S_{A B C}^{2}+S_{B C D}^{2}+S_{C D A}^{2}+S_{D A B}^{2}$. Find the maximal possible value of $s(T)$.

2 For every natural number n we define $f(n)$ by the following rule: $f(1)=1$ and for $n>1$ then $f(n)=1+a_{1} \cdot p_{1}+\ldots+a_{k} \cdot p_{k}$, where $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ is the canonical prime factorisation of n (p_{1}, \ldots, p_{k} are distinct primes and a_{1}, \ldots, a_{k} are positive integers). For every positive integer s, let $f_{s}(n)=f(f(\ldots f(n)) \ldots)$, where on the right hand side there are exactly s symbols f. Show that for every given natural number a, there is a natural number s_{0} such that for all $s>s_{0}$, the sum $f_{s}(a)+f_{s-1}(a)$ does not depend on s.
$3 \quad$ Let a set X be given which consists of $2 \cdot n$ distinct real numbers ($n \geq 3$). Consider a set K consisting of some pairs (x, y) of distinct numbers $x, y \in X$, satisfying the two conditions:
I. If $(x, y) \in K$ then $(y, x) \notin K$.
II. Every number $x \in X$ belongs to at most 19 pairs of K.

Show that we can divide the set X into 5 non-empty disjoint sets $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ in such a way that for each $i=1,2,3,4,5$ the number of pairs $(x, y) \in K$ where x, y both belong to X_{i} is not greater than $3 \cdot n$.

