

AoPS Community

1991 Vietnam Team Selection Test

Vietnam Team Selection Test 1991

www.artofproblemsolving.com/community/c4746 by orl, Rafal

Day 1

1 1.) In the plane let us consider a set S consisting of $n \ge 3$ distinct points satisfying the following three conditions:

I. The distance between any two points $\in S$ is not greater than 1. II. For every point $A \in S$, there are exactly two neighbor points, i.e. two points $X, Y \in S$ for which AX = AY = 1. III. For arbitrary two points $A, B \in S$, let A', A'' be the two neighbors of A, B', B'' the two

III. For arbitrary two points $A, B \in S$, let A', A'' be the two neighbors of A, B', B'' the two neighbors of B, then A'AA'' = B'BB''.

Is there such a set S if n = 1991? If n = 2000 ? Explain your answer.

2 For a positive integer n > 2, let $(a_1, a_2, ..., a_n)$ be a sequence of n positive reals which is either non-decreasing (this means, we have $a_1 \le a_2 \le ... \le a_n$) or non-increasing (this means, we have $a_1 \ge a_2 \ge ... \ge a_n$), and which satisfies $a_1 \ne a_n$. Let x and y be positive reals satisfying $\frac{x}{y} \ge \frac{a_1-a_2}{a_1-a_n}$. Show that:

 $\frac{a_1}{a_2 \cdot x + a_3 \cdot y} + \frac{a_2}{a_3 \cdot x + a_4 \cdot y} + \dots + \frac{a_{n-1}}{a_n \cdot x + a_1 \cdot y} + \frac{a_n}{a_1 \cdot x + a_2 \cdot y} \ge \frac{n}{x+y}.$

3 Let $\{x\}$ be a sequence of positive reals x_1, x_2, \ldots, x_n , defined by: $x_1 = 1, x_2 = 9, x_3 = 9, x_4 = 1$. And for $n \ge 1$ we have:

$$x_{n+4} = \sqrt[4]{x_n \cdot x_{n+1} \cdot x_{n+2} \cdot x_{n+3}}.$$

Show that this sequence has a finite limit. Determine this limit.

Day 2

1 Let *T* be an arbitrary tetrahedron satisfying the following conditions:

I. Each its side has length not greater than 1, II. Each of its faces is a right triangle.

Let $s(T) = S_{ABC}^2 + S_{BCD}^2 + S_{CDA}^2 + S_{DAB}^2$. Find the maximal possible value of s(T).

AoPS Community

1991 Vietnam Team Selection Test

- **2** For every natural number n we define f(n) by the following rule: f(1) = 1 and for n > 1 then $f(n) = 1 + a_1 \cdot p_1 + \ldots + a_k \cdot p_k$, where $n = p_1^{a_1} \cdots p_k^{a_k}$ is the canonical prime factorisation of n $(p_1, \ldots, p_k$ are distinct primes and a_1, \ldots, a_k are positive integers). For every positive integer s, let $f_s(n) = f(f(\ldots f(n)) \ldots)$, where on the right hand side there are exactly s symbols f. Show that for every given natural number a, there is a natural number s_0 such that for all $s > s_0$, the sum $f_s(a) + f_{s-1}(a)$ does not depend on s.
- **3** Let a set X be given which consists of $2 \cdot n$ distinct real numbers $(n \ge 3)$. Consider a set K consisting of some pairs (x, y) of distinct numbers $x, y \in X$, satisfying the two conditions:

I. If $(x, y) \in K$ then $(y, x) \notin K$. **II.** Every number $x \in X$ belongs to at most 19 pairs of K.

Show that we can divide the set X into 5 non-empty disjoint sets X_1, X_2, X_3, X_4, X_5 in such a way that for each i = 1, 2, 3, 4, 5 the number of pairs $(x, y) \in K$ where x, y both belong to X_i is not greater than $3 \cdot n$.

AoPS Online 🔯 AoPS Academy 🔯 AoPS & Cast