

AoPS Community

1992 Vietnam Team Selection Test

Vietnam Team Selection Test 1992

www.artofproblemsolving.com/community/c4747 by orl, grobber, darij grinberg, ak007

Day 1

- 1 Let two natural number n > 1 and m be given. Find the least positive integer k which has the following property: Among k arbitrary integers a_1, a_2, \ldots, a_k satisfying the condition $a_i a_j$ ($1 \le i < j \le k$) is not divided by n, there exist two numbers a_p, a_s ($p \ne s$) such that $m + a_p a_s$ is divided by n.
- **2** Let a polynomial f(x) be given with real coefficients and has degree greater or equal than 1. Show that for every real number c > 0, there exists a positive integer n_0 satisfying the following condition: if polynomial P(x) of degree greater or equal than n_0 with real coefficients and has leading coefficient equal to 1 then the number of integers x for which $|f(P(x))| \le c$ is not greater than degree of P(x).
- **3** Let *ABC* a triangle be given with BC = a, CA = b, AB = c ($a \neq b \neq c \neq a$). In plane (*ABC*) take the points A', B', C' such that:

I. The pairs of points A and A', B and B', C and C' either all lie in one side either all lie in different sides under the lines BC, CA, AB respectively;

II. Triangles *A'BC*, *B'CA*, *C'AB* are similar isosceles triangles.

Find the value of angle A'BC as function of a, b, c such that lengths AA', BB', CC' are not sides of an triangle. (The word "triangle" must be understood in its ordinary meaning: its vertices are not collinear.)

Day 2

- In the plane let a finite family of circles be given satisfying the condition: every two circles, either are outside each other, either touch each other from outside and each circle touch at most 6 other circles. Suppose that every circle which does not touch 6 other circles be assigned a real number. Show that there exist at most one assignment to each remaining circle a real number equal to arithmetic mean of 6 numbers assigned to 6 circles which touch it.
- **2** Find all pair of positive integers (x, y) satisfying the equation

$$x^2 + y^2 - 5 \cdot x \cdot y + 5 = 0.$$

3 In a scientific conference, all participants can speak in total $2 \cdot n$ languages ($n \ge 2$). Each participant can speak exactly two languages and each pair of two participants can have at most one common language. It is known that for every integer $k, 1 \le k \le n - 1$ there are at most k - 1 languages such that each of these languages is spoken by at most k participants. Show that we can choose a group from $2 \cdot n$ participants which in total can speak $2 \cdot n$ languages and each language is spoken by exactly two participants from this group.

Act of Problem Solving is an ACS WASC Accredited School.