Art of Problem Solving

AoPS Community

Vietnam Team Selection Test 1992

www.artofproblemsolving.com/community/c4747
by orl, grobber, darij grinberg, ak007

Day 1

1 Let two natural number $n>1$ and m be given. Find the least positive integer k which has the following property: Among k arbitrary integers $a_{1}, a_{2}, \ldots, a_{k}$ satisfying the condition $a_{i}-a_{j}$ ($1 \leq i<j \leq k)$ is not divided by n, there exist two numbers $a_{p}, a_{s}(p \neq s)$ such that $m+a_{p}-a_{s}$ is divided by n.

2 Let a polynomial $f(x)$ be given with real coefficients and has degree greater or equal than 1. Show that for every real number $c>0$, there exists a positive integer n_{0} satisfying the following condition: if polynomial $P(x)$ of degree greater or equal than n_{0} with real coefficients and has leading coefficient equal to 1 then the number of integers x for which $|f(P(x))| \leq c$ is not greater than degree of $P(x)$.

3 Let $A B C$ a triangle be given with $B C=a, C A=b, A B=c(a \neq b \neq c \neq a)$. In plane $(A B C)$ take the points $A^{\prime}, B^{\prime}, C^{\prime}$ such that:
I. The pairs of points A and A^{\prime}, B and B^{\prime}, C and C^{\prime} either all lie in one side either all lie in different sides under the lines $B C, C A, A B$ respectively;
II. Triangles $A^{\prime} B C, B^{\prime} C A, C^{\prime} A B$ are similar isosceles triangles.

Find the value of angle $A^{\prime} B C$ as function of a, b, c such that lengths $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are not sides of an triangle. (The word "triangle" must be understood in its ordinary meaning: its vertices are not collinear.)

Day 2

1 In the plane let a finite family of circles be given satisfying the condition: every two circles, either are outside each other, either touch each other from outside and each circle touch at most 6 other circles. Suppose that every circle which does not touch 6 other circles be assigned a real number. Show that there exist at most one assignment to each remaining circle a real number equal to arithmetic mean of 6 numbers assigned to 6 circles which touch it.

2 Find all pair of positive integers (x, y) satisfying the equation

$$
x^{2}+y^{2}-5 \cdot x \cdot y+5=0 .
$$

3 In a scientific conference, all participants can speak in total $2 \cdot n$ languages ($n \geq 2$). Each participant can speak exactly two languages and each pair of two participants can have at most one common language. It is known that for every integer $k, 1 \leq k \leq n-1$ there are at most $k-1$ languages such that each of these languages is spoken by at most k participants. Show that we can choose a group from $2 \cdot n$ participants which in total can speak $2 \cdot n$ languages and each language is spoken by exactly two participants from this group.

