AoPS Community

Vietnam Team Selection Test 1993

www.artofproblemsolving.com/community/c4748
by orl, darij grinberg

Day 1

1 We call a rectangle of size 2×3 (or 3×2) without one cell in corner a P-rectangle. We call a rectangle of size 2×3 (or 3×2) without two cells in opposite (under center of rectangle) corners a S-rectangle. Using some squares of size 2×2, some P-rectangles and some S-rectangles, one form one rectangle of size 1993×2000 (figures dont overlap each other). Let s denote the sum of numbers of squares and S-rectangles used in such tiling. Find the maximal value of s.

2 A sequence $\left\{a_{n}\right\}$ is defined by: $a_{1}=1, a_{n+1}=a_{n}+\frac{1}{\sqrt{a_{n}}}$ for $n=1,2,3, \ldots$. Find all real numbers q such that the sequence $\left\{u_{n}\right\}$ defined by $u_{n}=a_{n}^{q}, n=1,2,3, \ldots$ has nonzero finite limit when n goes to infinity.

THERE MIGHT BE A TYPO!

3 Let's consider the real numbers $x_{1}, x_{2}, x_{3}, x_{4}$ satisfying the condition

$$
\frac{1}{2} \leq x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \leq 1
$$

Find the maximal and the minimal values of expression:

$$
A=\left(x_{1}-2 \cdot x_{2}+x_{3}\right)^{2}+\left(x_{2}-2 \cdot x_{3}+x_{4}\right)^{2}+\left(x_{2}-2 \cdot x_{1}\right)^{2}+\left(x_{3}-2 \cdot x_{4}\right)^{2}
$$

Day 2

1 Let H, I, O be the orthocenter, incenter and circumcenter of a triangle. Show that $2 \cdot I O \geq I H$. When does the equality hold?

2 Let an integer $k>1$ be given. For each integer $n>1$, we put

$$
f(n)=k \cdot n \cdot\left(1-\frac{1}{p_{1}}\right) \cdot\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{r}}\right)
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ are all distinct prime divisors of n. Find all values k for which the sequence $\left\{x_{m}\right\}$ defined by $x_{0}=a$ and $x_{m+1}=f\left(x_{m}\right), m=0,1,2,3, \ldots$ is bounded for all integers $a>1$.

3 Let n points $A_{1}, A_{2}, \ldots, A_{n},(n>2)$, be considered in the space, where no four points are coplanar. Each pair of points A_{i}, A_{j} are connected by an edge. Find the maximal value of n for which we can paint all edges by two colors blue and red such that the following three conditions hold:
I. Each edge is painted by exactly one color.
II. For $i=1,2, \ldots, n$, the number of blue edges with one end A_{i} does not exceed 4 .
III. For every red edge $A_{i} A_{j}$, we can find at least one point $A_{k}(k \neq i, j)$ such that the edges $A_{i} A_{k}$ and $A_{j} A_{k}$ are blue.

