AoPS Community

Vietnam Team Selection Test 1994

www.artofproblemsolving.com/community/c4749
by orl, Mathx, grobber, seshadri

Day 1

1 Given a parallelogram $A B C D$. Let E be a point on the side $B C$ and F be a point on the side $C D$ such that the triangles $A B E$ and $B C F$ have the same area. The diaogonal $B D$ intersects $A E$ at M and intersects $A F$ at N. Prove that:
I. There exists a triangle, three sides of which are equal to $B M, M N, N D$.
II. When E, F vary such that the length of $M N$ decreases, the radius of the circumcircle of the above mentioned triangle also decreases.

2 Consider the equation

$$
x^{2}+y^{2}+z^{2}+t^{2}-N \cdot x \cdot y \cdot z \cdot t-N=0
$$

where N is a given positive integer.
a) Prove that for an infinite number of values of N, this equation has positive integral solutions (each such solution consists of four positive integers x, y, z, t),
b) Let $N=4 \cdot k \cdot(8 \cdot m+7)$ where k, m are no-negative integers. Prove that the considered equation has no positive integral solutions.

3 Let $P(x)$ be given a polynomial of degree 4, having 4 positive roots. Prove that the equation

$$
(1-4 \cdot x) \cdot \frac{P(x)}{x^{2}}+\left(x^{2}+4 \cdot x-1\right) \cdot \frac{P^{\prime}(x)}{x^{2}}-P^{\prime \prime}(x)=0
$$

has also 4 positive roots.

Day 2

1 Given an equilateral triangle $A B C$ and a point M in the plane ($A B C$). Let $A^{\prime}, B^{\prime}, C^{\prime}$ be respectively the symmetric through M of A, B, C.
I. Prove that there exists a unique point P equidistant from A and B^{\prime}, from B and C^{\prime} and from C and A^{\prime}.
II. Let D be the midpoint of the side $A B$. When M varies (M does not coincide with D), prove
that the circumcircle of triangle $M N P$ (N is the intersection of the line $D M$ and $A P$) pass through a fixed point.

2 Determine all functions $f: \mathbb{R} \mapsto \mathbb{R}$ satisfying

$$
f(\sqrt{2} \cdot x)+f(4+3 \cdot \sqrt{2} \cdot x)=2 \cdot f((2+\sqrt{2}) \cdot x)
$$

for all x.
3 Calculate

$$
T=\sum \frac{1}{n_{1}!\cdot n_{2}!\cdots n_{1994}!\cdot\left(n_{2}+2 \cdot n_{3}+3 \cdot n_{4}+\ldots+1993 \cdot n_{1994}\right)!}
$$

where the sum is taken over all 1994-tuples of the numbers $n_{1}, n_{2}, \ldots, n_{1994} \in \mathbb{N} \cup\{0\}$ satisfying $n_{1}+2 \cdot n_{2}+3 \cdot n_{3}+\ldots+1994 \cdot n_{1994}=1994$.

