Art of Problem Solving

AoPS Community

Vietnam Team Selection Test 1995

www.artofproblemsolving.com/community/c4750
by April

Day 1

1 Let be given a triangle $A B C$ with $B C=a, C A=b, A B=c$. Six distinct points A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2} not coinciding with A, B, C are chosen so that A_{1}, A_{2} lie on line $B C ; B_{1}, B_{2}$ lie on $C A$ and C_{1}, C_{2} lie on $A B$. Let α, β, γ three real numbers satisfy $\overrightarrow{A_{1} A_{2}}=\frac{\alpha}{a} \overrightarrow{B C}, \overrightarrow{B_{1} B_{2}}=\frac{\beta}{b} \overrightarrow{C A}$, $\overrightarrow{C_{1} C_{2}}=\frac{\gamma}{c} \overrightarrow{A B}$. Let d_{A}, d_{B}, d_{C} be respectively the radical axes of the circumcircles of the pairs of triangles $A B_{1} C_{1}$ and $A B_{2} C_{2} ; B C_{1} A_{1}$ and $B C_{2} A_{2} ; C A_{1} B_{1}$ and $C A_{2} B_{2}$. Prove that d_{A}, d_{B} and d_{C} are concurrent if and only if $\alpha a+\beta b+\gamma c \neq 0$.

2 Find all integers k such that for infinitely many integers $n \geq 3$ the polynomial

$$
P(x)=x^{n+1}+k x^{n}-870 x^{2}+1945 x+1995
$$

can be reduced into two polynomials with integer coefficients.
3 Find all integers a, b, n greater than 1 which satisfy

$$
\left(a^{3}+b^{3}\right)^{n}=4(a b)^{1995}
$$

Day 2

1 A graph has n vertices and $\frac{1}{2}\left(n^{2}-3 n+4\right)$ edges. There is an edge such that, after removing it, the graph becomes unconnected. Find the greatest possible length k of a circuit in such a graph.

2 For any nonnegative integer n, let $f(n)$ be the greatest integer such that $2^{f(n)} \mid n+1$. A pair (n, p) of nonnegative integers is called nice if $2^{f(n)}>p$. Find all triples (n, p, q) of nonnegative integers such that the pairs $(n, p),(p, q)$ and $(n+p+q, n)$ are all nice.

3 Consider the function $f(x)=\frac{2 x^{3}-3}{3 x^{2}-1}$.

1. Prove that there is a continuous function $g(x)$ on \mathbb{R} satisfying $f(g(x))=x$ and $g(x)>x$ for all real x.
2. Show that there exists a real number $a>1$ such that the sequence $\left\{a_{n}\right\}, n=1,2, \ldots$, defined as follows $a_{0}=a, a_{n+1}=f\left(a_{n}\right), \forall n \in \mathbb{N}$ is periodic with the smallest period 1995.
