

AoPS Community

1995 Vietnam Team Selection Test

Vietnam Team Selection Test 1995

www.artofproblemsolving.com/community/c4750 by April

Day 1

- 1 Let be given a triangle *ABC* with *BC* = *a*, *CA* = *b*, *AB* = *c*. Six distinct points *A*₁, *A*₂, *B*₁, *B*₂, *C*₁, *C*₂ not coinciding with *A*, *B*, *C* are chosen so that *A*₁, *A*₂ lie on line *BC*; *B*₁, *B*₂ lie on *CA* and *C*₁, *C*₂ lie on *AB*. Let α , β , γ three real numbers satisfy $\overline{A_1A_2} = \frac{\alpha}{a}\overrightarrow{BC}$, $\overline{B_1B_2} = \frac{\beta}{b}\overrightarrow{CA}$, $\overline{C_1C_2} = \frac{\gamma}{c}\overrightarrow{AB}$. Let *d*_A, *d*_B, *d*_C be respectively the radical axes of the circumcircles of the pairs of triangles *AB*₁*C*₁ and *AB*₂*C*₂; *BC*₁*A*₁ and *BC*₂*A*₂; *CA*₁*B*₁ and *CA*₂*B*₂. Prove that *d*_A, *d*_B and *d*_C are concurrent if and only if $\alpha a + \beta b + \gamma c \neq 0$.
- **2** Find all integers k such that for infinitely many integers $n \ge 3$ the polynomial

$$P(x) = x^{n+1} + kx^n - 870x^2 + 1945x + 1995$$

can be reduced into two polynomials with integer coefficients.

3 Find all integers *a*, *b*, *n* greater than 1 which satisfy

$$\left(a^3 + b^3\right)^n = 4(ab)^{1995}$$

Day 2	
1	A graph has n vertices and $\frac{1}{2}(n^2 - 3n + 4)$ edges. There is an edge such that, after removing it, the graph becomes unconnected. Find the greatest possible length k of a circuit in such a graph.
2	For any nonnegative integer n , let $f(n)$ be the greatest integer such that $2^{f(n)} n + 1$. A pair (n,p) of nonnegative integers is called nice if $2^{f(n)} > p$. Find all triples (n,p,q) of nonnegative integers such that the pairs (n,p) , (p,q) and $(n + p + q, n)$ are all nice.
3	Consider the function $f(x) = \frac{2x^3-3}{3x^2-1}$. 1. Prove that there is a continuous function $g(x)$ on \mathbb{R} satisfying $f(g(x)) = x$ and $g(x) > x$ for all real x . 2. Show that there exists a real number $a > 1$ such that the sequence $\{a_n\}, n = 1, 2,$, defined as follows $a_0 = a$, $a_{n+1} = f(a_n)$, $\forall n \in \mathbb{N}$ is periodic with the smallest period 1995.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.